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ABSTRACT
Background: Many studies in the software research literature on
bug fixing are built upon the assumption that “a given bug was
introduced by the lines of code that were modified to fix it”, or
variations of it. Although this assumption seems very reasonable
at first glance, there is little empirical evidence supporting it. A
careful examination surfaces that there are other possible sources
for the introduction of bugs such as modifications to those lines
that happened before the last change an changes external to the
piece of code being fixed. Goal: We aim at understanding the com-
plex phenomenon of bug introduction and bug fix. Method: We
design a preliminary approach distinguishing between bug intro-
ducing commits (BIC) and first failing moments (FFM). We apply
this approach to Nova and ElasticSearch, two large and well-known
open source software projects. Results: In our initial results we
obtain that at least 24% bug fixes in Nova and 10% in ElasticSearch
have not been caused by a BIC but by co-evolution, compatibility
issues or bugs in external API. Merely 26–29% of BICs can be found
using the algorithm based on the assumption that “a given bug
was introduced by the lines of code that were modified to fix it”.
Conclusions: The approach allows also for a better framing of the
comparison of automatic methods to find bug inducting changes.
Our results indicate that more attention should be paid to whether
a bug has been introduced and, when it was introduced.

CCS CONCEPTS
•General and reference→ Empirical studies; • Software and
its engineering→ Empirical software validation;
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1 INTRODUCTION
Fixing a bug1 in a software component usually consists of determin-
ing why it is behaving erroneously, and then correcting the part of
the component that causes that erroneous behavior. The developer
fixing the bug produces a change to the source code, which can be
clearly identified as the bug-fixing change (BFC). Identifying which
change(s) introduced the bug has proven to be a difficult task.

However, identifying changes that introduce bugs allows, for
example, to determine why and how the bug was introduced, which
may help, among others, to identify other potential bug introducing
changes [15]; to find patterns of bug introduction that could lead to
techniques to find them [5]; to identify who was responsible for in-
troducing the bug [4], which could lead to interesting self-learning
and peer-assessment processes; to learn about how long the bug
was present in the code [13], which allows in quality assessment.
For these and other reasons, finding the changes that introduced
bugs is an area of active research during the last decade.

To identify such a change, it is possible to navigate back in the
history of the software component, to find out when the malfunc-
tion was happening for the first time. This way, we introduce the
concept of “first failing moment” to extend the notion of “introduc-
ing”, we will refer to this moment as FFM. Using it, we theorize to
determine if a given change was the first one to show a malfunction.
From there, we show cases when the FFM is the bug-introducing
change (BIC) and when it is not, in the sense that this change did
not cause the malfunction.

In this emerging results paper we develop a preliminary ap-
proach to bug introduction and initial methodology for deter-
mining whether a given change to the source code is introducing
a given fixed bug in a causal sense. Subsequently, we also create
a preliminary model of root causes for those bugs for which we

1Through this paper we will use term “bug” to refer to the cause of an incorrect result
of a software component. In the literature, these causes are also referred to as “defects”
or “errors”.
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have not been able to establish the BIC. Using this approach we can
better understand the limitations of both manual and automatic
BIC-identification and answer following

RQ: What is the share of bug reports for which we
cannot (manually or automatically) find a correct BIC?

The remainder of this paper is structured as follows. We discuss
related work and its shortcomings in Section 2, and introduce our
approach of bug introduction in Section 3.We apply the approach to
two large open-source systems described in Section 4 and report on
the first results obtained in Section 5. Finally, we draw conclusions
and point out the potential future work in Section 6.

2 RELATEDWORK
The best known algorithm for automatic identification of code
changes introducing bugs was proposed by Śliwerski et al. [15].
This algorithm, known as SZZ, has been used in 187 follow-up
studies and cited in more than 590 studies as of February 2018 [14].
SZZ is based on text differences to discover modified, added and
deleted lines between the BFC and its previous version. The original
SZZ algorithm used the CVS annotate command2 to identify the
last commit that touched these lines. Since the inception of SZZ
two main improvements have been proposed: annotation graphs
instead of CVS annotate [7]; and refined classification of the types
of fix-inducing changes [18].

Researchers have largely used SZZ to predict [8, 19], classify [6,
11] and find bugs [5, 17]. Both the original SZZ and the improved
versions rely on characteristics of the code at the time of bug fixing
because this information can be easily retrieved. However, this
practice does not ensure correct identification of when and where
the bug was inserted. Recent studies have demonstrated several
limitations of SZZ. Rodriguez-Perez et al. studied the use and impact
of this algorithm and quantified its limitations [14], and Da Costa
et al. have made an important effort evaluating the results of five
alternative SZZ implementations using a proposed a framework [2].
Prechelt and Pepper offered a good overview of the limitations of
these methods to identify BICs when are adopted by practition-
ers [12]. German et al. [3] highlighted that changes in software may
have impact across the whole system and lead to the manifestation
of bugs in unchanged parts. Chen et al. studied the characteristics
of dormant bugs in the source code [1].

As opposed to the previous studies that have highlighted the
limitations of SZZ or tried to improve this algorithm [2, 9] this paper
proposes a more reliable alternative process of deciding whether
given a BFC a BIC exists, and how to identify the BIC when it exists.

3 TOWARDS AN APPROACH TO IDENTIFY
BUG-INTRODUCING CHANGES

3.1 Description of the preliminary approach
In order to discover the BIC with maximum accuracy, it is recom-
mended to manually backtrack each line of source code that is
changed in a BFC until the moment when the bug was inserted
the first time. If based on the information from the version control
system this moment coincides with a commit, i.e., a change that
can be witnessed in the version control system to either source
2Other control version systems provide similar functionality, e.g., git offers blame.

code or configuration files, the change can be regarded as the BIC.
However, in some situations, the failure is not directly caused by a
change visible in the version control system, but rather, the failure
is due to changes in the context or the environment. The moment
when the failure manifests itself is the FFM. In some, but not all
cases the BIC coincides with the FFM.

Theoretically the process of identifying the moment when the
bug was inserted for the first time, and identifying it as BIC or FFM
can be fully automated if the Test Signaling a Bug (TSB) is present.
TSB is a hypothetical test that could be run on any snapshot3 of the
code and replicate the circumstances under which the bugmanifests
itself. TSB returns True when the test is passed (meaning that the
snapshot does not contain the bug) or False when the test is not
passed (meaning that the snapshot contains the bug). Assuming
TSB is available, there is an easy way to find the BIC and FFM
by looking manually for the first snapshot in the linear version
precedence4 when TSB fails. This snapshot represents the change
that is the perfect candidate to be the BIC or the FFM.

This approach focuses on the cases when given a BFC a BIC can
be found or one can be sure that a BIC does not exist. To simplify,
we assume that there is only the master branch in the repository of
a project. Considering that the TSB can be run indefinitely across
the history of the source code, the proposed approach is able to
find the BIC and the FFC of a BFC by analyzing the changes that
fixed the bug. The TSB will be applied to all the ancestor commits5
of the BFC, looking for the snapshot that fails; when found, the
approach will consider it as a candidate for the BIC or FFM.

3.2 Manual Analysis
The input of this stage is a set of bug reports that describe a real
bug. In addition, bug reports have to be closed and a BFC merged in
the code source of the project to be able to apply our methodology.

3.2.1 Finding the lines that fixed the bug. We have to find the
source code that fixed the commit. We start by identifying the
BFC. In many open source projects developers provide a link to the
BFC in the bug report’s discussion thread, e.g., GitHub encourages
this behavior by automatically closing bugs if the commit message
contains the bug number preceded by #. Next we determine the
lines that the BFC changed. Also typically connected to the bug
report, is a link to the code review done for the changes. This
information can be essential to determine the origin of the bug as
the experts of the project, developers and reviewers, sometimes
discuss about the original cause of the bug. By applying git diff
we can identify what lines have been added, modified or deleted
between the version after the BFC and the previous one. Finally, we
filter out the added, modified or deleted lines that do not contain
source code (e.g., comments or blank lines) are not considered.

3.2.2 Determining, for each of those lines, the immediate previous
commit. Each individual line touched by the BFC has at most one
previous commit, i.e., the most recent commit preceding BFC that
has touched the line. However, there could potentially be as many
3It represents the entire state of the project at some point in the history
4A linear version precedence is constituted by all the ancestor commits of a BFC in a
repository
5The ancestor commits are all the commits previous to a commit which has been
committed into the control version system of a project.
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previous commits as modified lines in the BFC. Thus, we talk about
the set of all previous commits of the lines of a BFC, the Previous
Commit set (PCset).

3.2.3 Analyze each of these previous commits to determine if it is
the BIC. This analysis uses information available in the description
of the ticket and from the logs of the BFC and of all commits in
the PCset. Following Śliwerski et al. [15], commits after the bug
was opened are to be removed. As a result, when we consider the
previous commit (pc) in order to determine the BIC, one of the
following cases holds:

(1) pc = BIC , i.e., the previous commit of the line was the cause
of the bug. Thus, this commit was the BIC;

(2) pc , BIC , but the BIC exists: the previous commit was not
the BIC, but we are able to identify it in the chain of ancestor
commits of the BFC;

(3) pc , BIC , and the BIC does not exist: the last change was
not the BIC and it does not exist in the chain of ancestor
commits of the BFC.

4 EXPERIMENT
To perform a first evaluation of the preliminary approach of Sec-
tion 3 we apply it to two large and well-known open source systems,
Nova and ElasticSearch. Both systems have been considered in em-
pirical software engineering studies [10, 16].

Nova belongs to OpenStack project. OpenStack is a cloud com-
puting platformmainly written in Python, with a huge development
community thereby making it an interesting project to study. It
has more than 7,900 contributors and significant industrial support
from companies such as Red Hat, IBM, HP. Nova has more than
29,000 commits6. All its history is saved and available in a version
control system, an issue tracking system7 and a source code review
system8.

ElasticSearch is a distributed open source search and analytics
engine written in Java. It is continuously evolving since its first
release in 2010 and currently counts with more than 3,900 commits.
This project was chosen because it has a very strict policy of labeling
issues, because it has a similar number of commits to OpenStack
and because the programming language is different from Nova. The
code and issue list of ElasticSearch is hosted in GitHub9. There are
1,000 distinct authors and more than 4,500 closed bug reports.

To identify when the bugs appeared and when they were inserted
in Nova and ElasticSearch, we manually analyzed the BFC looking
for the moment of introducing the bug. In case it does not exist, we
investigate and discuss the reasons.

5 INITIAL RESULTS
In order to find the BIC, we manually analyzed 116 randomly se-
lected bug reports, 58 from Nova and 58 from ElasticSearch. Each
bug report and the associated BFC have been classified in one of
the three categories: the BIC exists (corresponding to cases 1 and 2
in Section 3.2.3), the BIC does not exist (corresponding to case 3 in
Section 3.2.3), and we could neither find a BIC nor a valid reason
6http://stackalytics.com
7https://launchpad.net/openstack
8https://review.openstack.org/
9https://github.com/elastic/elasticsearch/

Table 1: Number of BFCs (Bug-Fixing Commits) caused by
a BIC (Bug-Introducing commit) and NoBIC from 116 bug
reports from Nova and ElasticSearch.

BIC in BFC NoBIC in BFC Unknown
Nova 38 (65%) 14 (24%) 6 (10%)
ES 45 (77%) 6 (10%) 7 (12%)

Table 2: Reasons why a BFC (Bug-Fixing Commit) is not in-
duced by a BIC (Bug-Introducing commit)

Nova ElasticSearch
Co-evolution Internal 7 (50%) 2 (33%)
Co-evolution External 2 (14%) 2 (33%)

Compatibility 1 (7%) 0 (0%)
Bug in External API 4 (29%) 2 (33%)

for it not to exist (also corresponding to case 3 in Section 3.2.3). The
manual analysis has been carried out by the first author that has
consulted other authors in case of doubt.

Table 1 indicates that the BFC is caused by a BIC in 77% for
ElasticSearch and 65% for Nova.

When the BFC does not lead to the identification of a BIC, we
look for the bug’s root cause to find a reason why BIC would not
exist. Table 2 shows the main reasons for a bug not having a BIC:

• Co-evolution Internal: Changes in the source code that are
related to satisfying the new requirements for the project.
Since internal resources have been modified (e.g., directory
structure and permissions) or requirements have changed,
previous assumptions might be invalidated. The bugs caused
by the internal co-evolution can be explained by observing
that some parts of the code have been updated to reflect the
new circumstances, but not all. As such, the changes made
in the bug fixing commit cannot be traced back to the BIC.

• Co-evolution External: Bugs that are caused by an external
change. External resources have been modified without a
notification and the project starts to fail.

• Compatibility: Bugs are caused by an incompatibility be-
tween software and hardware or an incompatibility with an
operating system.

• Bug in External API : A change in the API of a third-party
code caused a bug in the source code of the project.

Finally, if we neither found BIC nor a reason for it not to be
present we classify the ticket as Unknown. Reasons for us not being
able to find BIC can be related to lack of information or to presence
of consecutive changes in the affected lines that make it impossible
to track it back to find the BIC.

Table 3 shows the percentage of BICs that can be found using the
SZZ-1 algorithm10. In order to find the BIC, we manually analyzed
the previous commits in all the PCset of the 116 random bug reports.
Since the PCset of a bug report can be greater than 1, the total
10We denote SZZ-1 as the enhancement of SZZ by Kim et al. [7]. We assume that
when a BFC presents a PCset greater than 1, the SZZ-1 flags all of them as BICs. Other
implementations are also possible, however, they will be studied in the future work
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Table 3: Number of bug-fixing commits with BIC and no BIC
from 116 bug reports

pc = BIC pc , BIC Unknown
Nova 36 (26%) 83 (60%) 18 (13%)
ES 35 (29%) 64 (53%) 22 (18%)

number of previous commits analyzed are 120 in Nova and 137 in
ElasticSearch. We observe that from the previous commits analyzed
in Nova and ElasticSearch, only a 26%-29% of the results can be
identified as BIC by the SZZ-1 algorithm. The mean of previous
commits per BFC in Nova is 2.3, while in ElasticSearch this number
is lower, 2.06. For this reason, the percentage of pc , BIC in both
projects is relatively high.

Some of the reasons why a pc analyzed was not the BIC are: (1)
The BFC removed obsolete code, (2) The BFC optimized some lines
of the code, (3) The line modified in the BFC already contained the
bug as it was inserted in a previous commit of this line, (4) The BFC
modified lines that were not related with the bug, and (5) The BFC
modified a line that was not buggy at the time of committing it.

The percentage of a BIC causes a BFC is around 65%-
77% in both projects, whereas 10%-24% of the BFC do not
present a BIC. The number of BICs that can be found
using the SZZ-1 algorithm is 26%-29%.

6 CONCLUSIONS AND FUTUREWORK
After analyzing 116 BFC and a set of 257 previous commits, we have
realized that determining where and when a bug was introduced is
not a trivial task. In fact, even if the location and time stamp of a
BIC are known, we need to (1) understand the bug and how to fix it
in the case we have indeed found the actual BIC, or (2) determine
that what we assume to be the BIC, is in fact not the BIC, but simply
the FFM because the bug was not present at this moment.

Our data clearly shows that identification of BIC is impossible
using solely techniques that rely on backtracking the source code
lines that have been modified to fix the bug. Indeed, BIC does not
exist in 10% in ElasticSearch and 24% in Nova, and even when BIC
exists, these techniques make assumptions which can cause the
wrong identification of BICs: our first results indicate that a 53%-60%
of the previous commit analyzed are not the BIC. This highlights
the inherent limitations of any SZZ-based technique and seed some
lights to investigate other techniques different from tracking back
the lines fixed in the BFC.

Bugs with no BICs might be caused by external changes to the
project or the modification of internal resources. In such circum-
stances to fix the bug, developers might be required to change lines
that were correct at the time of writing, but are no longer correct.
These lines, hence, manifested the bug, but did not introduce it.

Our first results should be seen as a call for a new technique for
identification of BICs that can deal with complexity of bug kinds.
As such, this paper proposes a preliminary approach which relies
on the implementation of the TSB to locate the BIC and the FFM.

This approach needs to be further studied and formalized to better
understand the complex phenomenon of bug introduction.

For future work, our primary action is to formalize and further
validate the proposed approach. The full automation of the method-
ology used in this paper is also interesting from a practical point
of view. That would provide software projects with a valuable tool
for understanding how they are introducing bugs, and therefore
design measures for mitigation. It would also help to improve the
performance of the current state-of-the-art tools and techniques.
Moreover, software developers can benefit from identifying where
the bug was inserted, improving their processes. Finally, the study
whether the percentage of BICs depends on the programming lan-
guage used in the project would be also interesting to look at.
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