
BugTracking: A tool to assist in the
identification of bug reports

Gema Rodŕıguez-Pérez, Jesús M. Gonzalez-Barahona, Gregorio Robles,
Dorealda Dalipaj, and Nelson Sekitoleko

GSyC/LibreSoft, University King Juan Carlos, Fuenlabrada (Madrid),
{gerope,ddalipaj,snelson}@libresoft.com

{jgb,grex}@gsyc.com

http://libresoft.es

http://gsyc.es

Abstract. Issue tracking systems are used, in most software projects,
but in particular in almost all free open source software, to record many
different kinds of issues: bug reports, feature requests, maintenance tick-
ets and even design discussions. Identifying which of those issues are bug
reports is not a trivial task. When researchers want to conduct studies
on the bug reports, managed by a software development project, first of
all they need to perform this identification.

The job for researchers here is very different from the bug triaging that
researchers do. In the latter case, people with a considerate experience
in the project make a decision based on the information available at that
time (maybe just a short comment by some user), asking, if needed, for
more details. In the former case, researchers usually have not that ex-
perience in the project, but they have at their use all the information
produced, until the moment the issue was closed. This may include not
only all comments and actions on the issue tracking system, but for ex-
ample, discussions about a fix in the code review system, or the final
fixing patch in the source code management system. Having all that in-
formation conveyed to the researchers, in an easy, flexible and quick way,
accelerates and makes their decision process much more reliable. It sim-
plifies large scale manual analysis of issues (in hundreds or thousands),
helping researchers to ensure that they are really working with what they
intend to work: bug reports.

This paper presents a tool designed to solve exactly the problem of pro-
viding the researchers with all the relevant information needed to decide
whether an issue corresponds to a bug report or not. The tool uses infor-
mation extracted automatically from the projects repositories. It offers
a web-based interface which allows collaboration, traceability and trans-
parency of the identification of bug reports. All this makes the process
easier, faster, and more reliable.

Keywords: Issue Tracking System, Code Review System, Bug Triage,
Tool



2 Authors Suppressed Due to Excessive Length

1 Introduction

While a software system is being developed, software engineers use version con-
trol repositories to produce and manage their code. Researchers and testers re-
port issues, which are then stored in other repositories, known as issue-tracking
systems, where many kinds of issues can be found.

Issue-tracking systems facilitate the process of solving these bugs, but their
shortcoming is the difficulty in distinguishing which of the reports are bug reports
or not. These systems provide an interface to manage reports of maintenance
activities where researchers can report issues describing bug reports, features or
code optimizations. During the bug triage process it is difficult to distinguish
bug reports from other issues; a study describes that two of five issues are mis-
classified [2]. This misclassification causes bias predicting bugs where non-bug
reports are taken into account.

To distinguish the bug reports we could have used automatic classification
systems, as described in [1], but the vocabulary used in the description of the
issues could change from project to project, as well as the policy depending on
the project. Consequently, data validation is recommended as mentioned in [2].

Linking a bug report in a issue-tracking system and the corresponding fix-
commit may not be a trivial task. Traditionally, the methods used in link recov-
ery [5, 6] are based on text patterns or the mining of key phrases. Unfortunately,
these methods include many false negatives causing bias in data [7, 8]. There-
fore other methods, such as the Mlink approach, have been developed to link
bug report with fixes using features in the changed source files corresponding to
commit logs in addition to the traditional textual features [4]. But in all of these
methods, it is supposed that the issues are bug reports.

In this paper, we present a tool that displays, to the benefit of the researchers,
a collection of all the necessary information needed to decide if an issue is a bug
report or not. The tool, through the collection of exhaustive data on bug reports
and the corresponding fix-commit, along with researchers extensive knowledge
of the system, will help the last in their decision making, leading them into
choosing only bug reports. This way they will not recur in any bias induced by
non bug reports. To the best of our knowledge, this is the first tool that provides
support to the identification of bugs and classification of bug reports. The need
of the contribution of this tool arises from the increasing interest that both the
academy and industry world is showing in the bug classification as a primary
factor in modern software development.

2 The tool

The tool is a web application, therefore it runs in a browser. It displays the main
data for distinguishing bug reports from others issues. The researchers will be
responsible for classifying the issues from Launchpad as bug reports or not, and
can thereby explain their decision for each issue. The issues are what we will
refer as tickets during the paper.



BugTracking: A tool to assist in the identification of bug reports 3

2.1 Architecture

The tool integrates information from Launchpad as issue-tracking system and
Gerrit as code review system. The figure 1 presents the architecture of the tool.
The tool was developed using JavaScript, Node, JQuery and HTML5 technolo-
gies. The queries to the API of Gerrit and Launchpad are executed on server
side. The responses are displayed on the client side. The end user can view the
information displayed and interact with the server through events. Both sides
exchange information using JSON files along with using their own REST API.
Furthermore, we use a third-party application between GitHub and the browser
in order to integrate some functionalities from GitHub.

Fig. 1. Architecture of the tool.

2.2 Main Features

Figure 2 illustrates a screen short of the main tab of the tool. In particular,
the tool displays the ID of the tickets which are extracted randomly from each
issue-tracking repository of OpenStack. Other related information is displayed.
Based on all these data, the researcher can decide whether the issue is a bug
report or not. We focused on displaying the main parameters that help in the
classification of reports, such as title and description of the report, as well as the
description of the fix commit. For example for ticket ID 1531734 the tool dis-
plays the information related with the ticket in Launchpad and its corresponding
review in Gerrit.

There is other additional information that the tool does not displays. If the
researchers find it necessary, they can access the Launchapd and Gerrit web
pages, respectively of the ticket and review, through the links provided by the
tool. Thereby they can access extra information such as the comments written by
code review researchers that correspond to that particular ticket. This provides
a mean for tracking the history of the ticket from the moment it was opened
until it was closed.



4 Authors Suppressed Due to Excessive Length

The tool further facilitates researchers to record and express their opinion
about the ticket after reading all the information that is automatically displayed.
They have to classify the ticket as Bug report or Not Bug report. Due to unso-
phisticated description used in the ticket, the researchers could doubt the classi-
fication. For this reason we add an extra option in the classification, Undecided.
Furthermore, the researchers have a text area to write keywords found in the
title, in the description of the ticket and commit message, that support their
classification. Finally, they can leave their comment on why they classified a
report as Bug, Not Bug or Undecided. Such information, in the future, will help
us building an automatic bug classification system.

Another feature of the tool is that it allows to carry out a blind analysis of
the tickets. Since all the data analysis inserted about a ticket is saved in a file
on ones GitHub account, such analysis can be done by two or more researchers
in parallel. By saving the data in GitHub, we could also measure the time that
each researcher need for an analysis, which tickets were more difficult to analyze
and other metrics that can help us understanding the current problem of issue
misclassification.

Fig. 2. Screenshot of Analyze Tab



BugTracking: A tool to assist in the identification of bug reports 5

The web page provides different functionalities depending on the tab the
researcher is browsing. We explain these functionalities in the following:

1. Tab Repository: In this tab you can choose which repository you want to
analyze. Currently the tool supports the four principal repositories of Open-
Stack: Cinder, Nova, Neutron and Horizon.

2. Tab Analyze: It is the Tab illustrated in Figure 2. It is where all the data
from a specific ticket are displayed. The user can either select a random
identifier or insert one of his choice. According to the data retrieved from
Launchpad and Gerrit, the researcher can classify the ticket.

3. Tab Statistics: This tab extracts the data already analyzed by a researcher
involved in the analysis from their user account in GitHub. It analyzes these
data and displays a distribution of the classifications in a table;

4. Tab Modify: In case the researcher thinks to have inserted a mistake during
the analysis, in this tab he/she can edit any of the data saved in his/her
GitHub repository.

At the current state we present the initial version of the tool which is available
at;1, as well as a demonstration video2. It is licensed under GPL 0 (General
Public License) and you can find the code at a GitHub page3. Anyone can use
the tool, regardless of having GitHub account or not. However, it should be
noted, for the researcher to save, modify data and see statistics of analysed
tickets automatically, he/she should create a GitHub repository with the same
name as the OpenStack project to be analysed, for example if the OpenStack
project name is Nova, than the GitHub repository name should be Nova.

3 Results

We have analyzed 459 different tickets under the support of the initial version
of the tool. 125 tickets where from Cinder, 125 from Nova, 125 from Horizon
and 84 from Neutron. All the tickets have been analyzed by two out of the three
researchers. The Table 1 shows the percentage of tickets classified as bug reports
for the different researchers. These results don’t report for some combinations
of researchers because of in some projects, only a researcher analyzed all the
tickets and the two remaining analyzed the half of these tickets each one.

The percentages between R1 and R3 are really similar, whereas the R2 has
identified more Bug Reports in his analysis. But, the three results support the
misclassification present in bug tracking systems. Furthermore, according to [2]’s
work, approximately two of five issues are misclassified in the analysis of R1 and
R3.

Focusing in the concordance between researchers analyzing the same ticket,
417 tickets present a double bind review process, obtaining that each ticket
was analyzed by two researchers. Table 2 shows the percentage of concordance
between researchers in each repository after the analysis of the tickets.

1bugtracking.libresoft.es
2https://www.youtube.com/watch?v=q0-TIvL4mqc&feature=youtu.be
3https://github.com/Gemarodri/BugTracking



6 Authors Suppressed Due to Excessive Length

Table 1. Classification statistics of each researcher

Bug Report Not Bug Report Undecided Total

Researcher 1 (184) 55% (115) 34% (35) 11% 334
Researcher 2 (188) 76% (54) 22 % (7) 3% 249
Researcher 3 (188) 56% (116) 35% (30) 9% 334

Table 2. Concordance between each researcher in each repository

Nova Cinder Horizon Neutron Total

R1 and R2 (44/63) 70% (40/52) 77% (37/62) 60% - 68%
R1 and R3 - (46/63) 73% (48/63) 76% (26/42) 62% 71 %
R2 and R3 (41/62) 66% (10/10) 100% - - 71%

Table 2 shows that the concordance of the researchers is high, but, also
demonstrate the difficulty to classify tickets as bug report or as not bug report,
because each researcher can have different opinions about a specific ticket. The
concordance could be higher if they were expert in the project.

All data from the analysis are available in the GitHub repositories of the
researchers 4, the repositories having the same name of the projects analyzed in
OpenStack.

3.1 Future Work

Since we are conducting empirical studies based on OpenStack projects, the
current tool is limited to OpenStack as a pilot project. In the future, our aim is
to extend the tool at extracting tickets from others bug tracking systems, such
as Bugzilla or GitHub where the server will operate against them to analyze the
most OSS project. Additionally, we aim to study the misclassification in this OSS
projects. We would like to add more features to the tool. One of them would be
to display information such as the lines of code changed in the files affected from
the fix-commit, along with the code in the bug seeding moment. Furthermore,
we would like to implement an automatic classifier for the tickets, based on the
semantic of the description of the ticket and the fix-commit. The result will
indicate a percentage of confidence about whether a ticket is a bug report or
not. However, the researcher will always make the final decision. The automatic
classification will enable researchers to focus only on problematic issues, which
can be easily misclassified.

We also aim to investigate what will be the results if the data sources used
by the tool to automatically extract tickets are used in isolation to to manually
classify bugs or other possible bug classifying tools. This will help us validate
our results and the tool to further improve.

4https://github.com/{Gemarodri,ddalipaj,nellysek}



BugTracking: A tool to assist in the identification of bug reports 7

References

1. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., & Guéhéneuc, Y. G. (2008,
October). Is it a bug or an enhancement?: a text-based approach to classify change
requests. In Proceedings of the 2008 conference of the center for advanced studies
on collaborative research: meeting of minds (p. 23). ACM.

2. Herzig, K., Just, S., & Zeller, A. (2013, May). It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 2013 International
Conference on Software Engineering (pp. 392-401). IEEE Press.

3. J. liwerski, J., Zimmermann, T., & Zeller, A. (2005, May). When do changes induce
fixes?. In ACM sigsoft software engineering notes (Vol. 30, No. 4, pp. 1-5). ACM.

4. Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., & Nguyen, T. N. (2012, November).
Multi-layered approach for recovering links between bug reports and fixes. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering (p. 63). ACM.

5. Zimmermann, T., Premraj, R., & Zeller, A. (2007, May). Predicting defects for
eclipse. In Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE
Workshops 2007. International Workshop on (pp. 9-9). IEEE.

6. Zimmermann, T., & Weigerber, P. (2004, May). Preprocessing CVS data for fine-
grained analysis. In Proceedings of the First International Workshop on Mining
Software Repositories (pp. 2-6). sn.

7. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu,
P. (2009, August). Fair and balanced?: bias in bug-fix datasets. In Proceedings of
the the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering (pp. 121-
130). ACM.

8. Nguyen, T. H., Adams, B., & Hassan, A. E. (2010, October). A case study of bias in
bug-fix datasets. In Reverse Engineering (WCRE), 2010 17th Working Conference
on (pp. 259-268). IEEE.


