Thesis Defense Presentation

Towards an Empirical Model to Identify When Bugs are Introduced

 $\bullet \bullet \bullet$

Gema Rodríguez Pérez

November 21, 2018

Overview

- 1. Background
- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Overview

1. Background

- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Understanding the problem

Importance of Bugs	Bug introduction	The impact
 From 1 to 25 bugs for every 1000 lines inserted. Software bugs costs almost \$60 billions to the US. 	 It is focuses on identifying which changes introduced bugs. In ESEM, it is based on the study of previous bugs. 	 Measuring developer performance. Measure bug residency time. Find bug-prone change patterns.

The Current Assumption:

"A given bug was introduced by the lines of code that were modified to fix it"

The SZZ Algorithm :

Identification of the bug introducing change: 12scf3s

Is the assumption fulfilled in these scenarios?

Hyper-V driver failing with dynamic memory due to virtual NUMA

Bug #1305897 reported by 🧟 Luis Fernandez on 2014-04-10

This bug affects 1 person

8 🚯

Af	fects	Status	Importance	Assigned to	Milestone
⊳	💽 OpenStack Compute (nova)	Fix Released 🖉	Medium	alessandro Pilotti	OpenStack Compute (nova) 2015.1.0 "kilo"
⊳	🕗 Juno	Fix Released 🕖	Undecided	Unassigned	OpenStack Compute (nova) 2014.2.4

🛞 Also affects project 👩 🛞 Also affects distribution/package 🥟 Nominate for series

Bug Description

Starting with Windows Server 2012, Hyper-V provides the Virtual NUMA functionality. This option is enabled by default in the VMs depending on the underlying hardware.

However, it's not compatible with dynamic memory. The Hyper-V driver is not aware of this constraint and it's not possible to boot new VMs if the nova.conf parameter 'dynamic_memory_ratio' > 1.

Statement I:

"The fact of introducing a bug depends on the definition of bug, and the future work should verify whether the introduction of bug meets a given definition of bug" [Kim et al., 2006]

Statement II:

It is necessary to develop new theories and mathematical models to increase understanding of software evolution, and to invest in research that tries to bridge the gap between the what of software evolution and the how of software evolution" [Mens et al., 2005]

Thesis' Aim :

To develop a theory that:

1) defines what is a bug and,

2) how to identify when this bug was inserted in a software product.

Thesis' Contributions :

- 1. A SLR on the use of the SZZ algorithm.
- 2. A quantification of the SZZ algorithm.
- 3. A theoretical model for identifying bugs-introducing changes.
- 4. An empirical study to validate the theoretical model.

Overview

- 1. Background
- **2.** Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Reproducibility and Credibility in Empirical Software Engineering:

A case study based on a systematic literature review of the use of the SZZ algorithm:

- 1. What is the impact of the SZZ algorithm in academia?
- 2. Are studies that use the SZZ reproducible?
- 3. Do the publication mention the limitations of SZZ?

Inclusion Criteria :

All published studies written in English that cite either:

- The original SZZ publication: "When do changes induce fixes?", or
- 2. one of the two publications with improved versions:

"Automatic Identification of Bug-Introducing Changes",

"SZZ Revisited: Verifying When Changes Induce Fixes".

Exclusion Criteria :

Selection process	#SZZ	#SZZ-1	#SZZ-2
Papers extracted from the databases	788	241	41
Sift based on false alarms	29 removed	10 removed	2 removed
Sift based on not available/English writing	40 removed	4 removed	0 removed
Sift based on duplicates	308 removed	187 removed	32 removed
Full papers considered for review	411	40	7
Removed after reading	149 removed	32 removed	4 removed
Papers accepted to the review	262	8	3
	187		

Extracting Data from Papers:

- Purpose and outcome of the study
- Venue and class of publication
- Whether it has a **replication package**
- Whether it has a **detailed description** of the methods and data used
- Whether the **limitations** of the algorithm are mentioned
- Whether the authors use **the improved versions** of the SZZ algorithm.

How is the impact of the SZZ algorithm?

High diversity

Туре	# Different	# Publications
Journals	21	42
Conferences & Symposiums	40	102
Workshops	13	13
University theses	20	30

How is the impact of the SZZ algorithm?

High maturity

Туре	Name	Rating	# Papers (%)
С	Conf Mining Softw Repositories (MSR)	Class 2 - CORE	15 (8)
С	Intl Conf Software Eng (ICSE)	Class 1 - CORE A*	12 (6)
С	Intl Conf Soft Maintenance (ICSME)	Class 2 - CORE A	10 (5)
J	Empirical Software Eng (EmSE)	JCR Q1	9 (5)
J	Transactions on Software Eng (TSE)	JCR Q1	9 (5)
С	Intl Symp Emp Soft Eng & Measurement (ESEM)	Class 2 - CORE A	8 (4)
С	Intl Conf Automated Softw Eng (ASE)	Class 2 - CORE A	7 (4)
С	Symp Foundations of Software Eng (FSE)	Class 1 - CORE A*	6 (3)

How is the impact of the SZZ algorithm?

High impact

Purpose

Bug Prediction

Bug Proneness

Bug Detection

Bug Localization

Outcome

Approach / Tools

Empirical Study

Replications

Metrics

DataSets

Are studies that use the SZZ reproducible?

	Package Only	Environment Only	Both	None
YES	19	72	24	72
NO	168	96	163	115

Do the publication mention the limitations of SZZ?

Part	Туре
First part	Incomplete mapping [SLR[14]]
	Inaccurate mapping [SLR[15]]
	Systematic bias [SLR[14]]
Second part	Cosmetic changes, comments, blank lines [SLR[16]].
	Added lines in fixing commits [SLR[8]]
	Long fixing commits [SLR[8]]
	Semantic level is weak [SLR[11]]
	Correct changes at the time of being committed [SLR[8]]
	Commit Squashing [17]

Do the publication mention the limitations of SZZ?

	NO-TTV	TTV-1st part only	TTV-2nd part only	Complete TTV
YES	94	44	10	39
NO	93	143	177	148

TTV = Threats to Validity

Drawbacks

Functional

- Many possible BICs
- Only new additions
- Multiple modifications of a line
- Weak semantic level
- Dormant bugs

Conceptual

- Changing environment
- Compatibility problems

Overview

- 1. Background
- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Definitions: BFC, PC, DC, AC.

Bug Fixing Commit

25

Definitions : Test Signaling a Bug (TSB)

- TSB is a hypothetical test that could be run on any snapshot.
- TSB is a perfect test with 100% of coverage.
- TSB returns TRUE ---- No bug in the snapshot
- TSB returns FALSE Bug in the snapshot

Definitions : Snapshot

Dependencies, requirements, external artifacts ...

The Empirical Model

Test Signaling a Bug (TSB) and the BIS

BFS

Test Signaling a Bug not runnable

BFS

Test Signaling a Bug always fails

BFS

Overview

- 1. Background
- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Case Studies

216	Comp	banies

- 32470 Commits
- 1602 Contributors

4581836 LOCs

1930 Resolved bugs

ELASTICSEARCH

39402Commits1032Contributors1187732LOCs

4958 Resolved bugs

Research questions:

- RQ1: What is the frequency for a BFC being caused by a BIC?
 - RQ1.1: Which reasons can explain that a BFC is not caused by a BIC?
 - RQ1.2: Could the location of a bug be modeled on the BIC and the FFM?
- RQ2: What are the specifications that define the effectiveness of an algorithm used to locate the origin of a bug?
 - RQ2: Which reasons caused that a previous commit was not the BIC?

Methodology

Methodology

First Step: Filtering

nova list's --tenant flag also requires --all-tenants

Bug #1185290 reported by 🙇 Aarti Kriplani on 2013-05-29

afi Khardalian (rkhardalian) wrote on 2013-06-10:

I disagree Chris, mainly because the structure of the requests and code path should largely be transparent to the user. I'd suggest that specifying --tenant should imply you're doing a query across --alltenants unless the --tenant specified is the same as what's contained in OS_TENANT_NAME (the unless part is debatable).

```
a given tenant, it works only when the --all-tenant flag is passed.
For e.g. nova list --tenant 123456 --all-tenants 1
If you leave off the last "--all-tenants 1" flag, you get back an empty
response body (with a 200 response)
The "--all-tenants 1" should not be required for the "--tenant" flag to
function properly.
```

37

Second Step: Identifying the BIC and the FFM

- Finding the lines that fixed the bug:
 - Finding the BFC
 - Finding the lines changed in the BFC
 - Filter out lines that are not code.

Identifying the BIC and the FFM:

- Determine the previous commit

Identifying the BIC and the FFM:

- Analyze those previous commits to determine the FFM and BIC:
 - $_{\circ}$ The commit inserted the bug \longrightarrow BIC
 - The commit didn't insert the bug ----> FFM

Overview

- 1. Background
- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- **5.** Findings

6. Implications and Recommendations

Filtering Results

	Bugs	Other Issues
Nova	57	3
ElasticSearch	59	1
Total	116	4

RQ1 : What is the frequency for a BFC being caused by a BIC?

RQ2: What are the specifications that define the effectiveness of an algorithm used to locate the origin of a bug?

	Precision	Recall	F1-Score
Nova SZZ	0.32	0.60	0.42
Nova SZZ-1	0.35	0.58	0.44
Nova SZZ-1E	0.64	0.60	0.66
ElasticSearch SZZ	0.31	0.68	0.43
ElasticSearch SZZ-1	0.32	0.71	0.44
ElasticSearch SZZ-1E	0.42	0.42	0.43

RQ2: Which reasons caused that a previous commit was not the BIC?

- 1. Variable renaming
- 2. Equivalent change
- 3. API changes
- 4. Obsolete code
- 5. Refactoring of the BFC

Overview

- 1. Background
- 2. Systematic Literature Review
- 3. Model to Identify Changes that Introduced Bugs
- 4. Empirical Evaluation of the Model
- 5. Findings

6. Implications and Recommendations

Implications and Recommendations

- Most of the publications are not reporting the limitations of current algorithms to identify bug-introducing commits.
- Studies must be aware of the risk of every assumption used.
- The reproducibility of the studies is discovery limited.
- The correct identification of the origin of the bug can help to improve many areas in SE (bug detection, bug prediction, a automatic fix generation ...)

Implications and Recommendations

- Bugs are not always introduced in the source code, and this phenomenon should be further investigated.
- A bug has to be contextualized to understand when and how it was inserted.
- The model provides a clear condition to determine if a given algorithm for identifying the change introducing a bug is correct or not when performing the identification.

Thesis' Publications :

1. Bugtracking: A tool to assist in the identification of bug reports.

IFIP International Conference on Open Source Systems, 2016

- 2. How much time did it take to notify a Bug? Two case studies: ElasticSearch and Nova. IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics (WETSoM), 2017
- 3. Reproducibility and Credibility in ESE: A Case Study based on a Systematic Literature Review of the use of the SZZ algorithm.

Information and Software Technology, 2018.

4. What if a bug has a Different Origin? Making Sense of Bugs Without an Explicit Bug Introducing Change.

12th International Symposium on Empirical Software Engineering and Measurement, 2018

