
Towards an Empirical Model to
Identify When Bugs are Introduced

November 21, 2018

Gema Rodríguez Pérez

Thesis Defense Presentation

Universidad
Rey Juan Carlos 1

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
2

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
3

Understanding the problem
Importance of Bugs

• From 1 to 25 bugs for
every 1000 lines
inserted.

• Software bugs costs
almost $60 billions to
the US.

Bug introduction

• It is focuses on
identifying which
changes introduced
bugs.

• In ESEM, it is based
on the study of
previous bugs.

The impact

• Measuring developer
performance.

• Measure bug
residency time.

• Find bug-prone
change patterns.

4

The Current Assumption:

“A given bug was introduced by the lines
of code that were modified to fix it”

5

The SZZ Algorithm :

6

Is the assumption fulfilled in these scenarios?

7

Statement I:

“The fact of introducing a bug depends on the definition
of bug, and the future work should verify whether the
introduction of bug meets a given definition of bug” [Kim et
al., 2006]

8

Statement II:

“It is necessary to develop new theories and
mathematical models to increase understanding of
software evolution, and to invest in research that tries to
bridge the gap between the what of software evolution
and the how of software evolution” [Mens et al., 2005]

9

Thesis’ Aim :
To develop a theory that:

1) defines what is a bug and,

2) how to identify when this bug was inserted
in a software product.

10

Thesis’ Contributions :

1. A SLR on the use of the SZZ algorithm.

2. A quantification of the SZZ algorithm.

3. A theoretical model for identifying bugs-introducing
changes.

4. An empirical study to validate the theoretical model.

11

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
12

Reproducibility and Credibility in Empirical Software
Engineering:
A case study based on a systematic literature review of the use of the
SZZ algorithm:

13

1. What is the impact of the SZZ algorithm in academia?

2. Are studies that use the SZZ reproducible?

3. Do the publication mention the limitations of SZZ?

Inclusion Criteria :
All published studies written in English that cite
either:

1. The original SZZ publication: “When do changes induce
fixes?”, or

2. one of the two publications with improved versions:

“Automatic Identification of Bug-Introducing Changes”,

“SZZ Revisited: Verifying When Changes Induce Fixes” .
14

Exclusion Criteria :

15

149

187

Extracting Data from Papers:
● Purpose and outcome of the study

● Venue and class of publication

● Whether it has a replication package

● Whether it has a detailed description of the methods and data used

● Whether the limitations of the algorithm are mentioned

● Whether the authors use the improved versions of the SZZ

algorithm.

16

How is the impact of the SZZ algorithm?

17

High diversity

How is the impact of the SZZ algorithm?

18

High maturity

How is the impact of the SZZ algorithm?

Purpose Outcome

Bug Prediction

Bug Proneness

Bug Detection

Bug Localization

Approach / Tools

Empirical Study

Replications

Metrics

DataSets
19

High impact

Are studies that use the SZZ reproducible?

Package Only Environment Only Both None

YES 19 72 24 72

NO 168 96 163 115

20

Do the publication mention the limitations of SZZ?

21

Do the publication mention the limitations of
SZZ?

NO-TTV TTV-1st part
only

TTV-2nd part
only

Complete TTV

YES 94 44 10 39

NO 93 143 177 148

TTV = Threats to Validity

22

Drawbacks
Functional

● Many possible BICs
● Only new additions
● Multiple modifications of

a line
● Weak semantic level
● Dormant bugs

Conceptual

● Changing environment
● Compatibility problems

23

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
24

Definitions: BFC, PC, DC, AC.

Bug Fixing Commit

BFC

V6

V2

V4

PCPC DC

25

AC

Previous Commit

Previous CommitDescendant Commit

V2 V4 V6

Definitions : Test Signaling a Bug (TSB)
● TSB is a hypothetical test that could be run on any

snapshot.

● TSB is a perfect test with 100% of coverage.

● TSB returns TRUE No bug in the snapshot

● TSB returns FALSE Bug in the snapshot

26

Definitions : Snapshot

27

Dependencies, requirements, external artifacts …

V1 V2 V3 V4 V5 V6 V7 BFC

The Empirical Model

28

Test Signaling a Bug (TSB) and the BIS

BFSBIS

VCS ITS CRS

29

Test Signaling a Bug not runnable

BFSBIS

30

VCS ITS CRS

Test Signaling a Bug always fails

BFS

31

VCS ITS CRS

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
32

Case Studies

NOVA

216 Companies

32470 Commits

1602 Contributors

4581836 LOCs

1930 Resolved bugs

ELASTICSEARCH

39402 Commits

1032 Contributors

1187732 LOCs

4958 Resolved bugs

33

Research questions:
● RQ1: What is the frequency for a BFC being caused by a BIC?

○ RQ1.1: Which reasons can explain that a BFC is not caused by a BIC?

○ RQ1.2: Could the location of a bug be modeled on the BIC and the FFM?

● RQ2: What are the specifications that define the effectiveness of an
algorithm used to locate the origin of a bug?

○ RQ2: Which reasons caused that a previous commit was not the BIC?

34

Methodology

35

Methodology

36

GOLDEN SET

Precision Recall F1- Score

1) SZZ algorithm

2) SZZ-1 algorithm

3) SZZ-1E algorithm

First Step: Filtering

37

Second Step: Identifying the BIC and the FFM
● Finding the lines that fixed the bug:

○ Finding the BFC

○ Finding the lines changed in the BFC

○ Filter out lines that are not code.

38

Identifying the BIC and the FFM:
● Determine the previous commit

○ Lines modified or removed Previous
commits

○ Lines added Analize surroundings
commits

39

Identifying the BIC and the FFM:

● Analyze those previous commits to determine
the FFM and BIC:

○ The commit inserted the bug BIC

○ The commit didn’t insert the bug FFM

40

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
41

Filtering Results

Bugs Other Issues

Nova 57 3

ElasticSearch 59 1

Total 116 4

42

RQ1 : What is the frequency for a BFC being caused by a BIC?

Reasons of No BIC

No BIC
BIC

545

Nova

57

12

35

ElasticSearc
h

59

22
54

5
21%

79%

9%

91%

Nova ElasticSearch
Co-evolution Internal 5 (42%) 2 (40%)
Co-evolution External 2 (17%) 1 (20%)
Compatibility 1 (8%) 0 (0%)
Bug in External API 4 (33%) 2 (40%)

45

43

RQ2: What are the specifications that define the effectiveness
of an algorithm used to locate the origin of a bug?

Precision Recall F1-Score

Nova SZZ 0.32 0.60 0.42

Nova SZZ-1 0.35 0.58 0.44

Nova SZZ-1E 0.64 0.60 0.66

ElasticSearch SZZ 0.31 0.68 0.43

ElasticSearch SZZ-1 0.32 0.71 0.44

ElasticSearch SZZ-1E 0.42 0.42 0.43
44

RQ2: Which reasons caused that a previous commit was
not the BIC?

45

1. Variable renaming

2. Equivalent change

3. API changes

4. Obsolete code

5. Refactoring of the BFC

Overview
1. Background

2. Systematic Literature Review

3. Model to Identify Changes that Introduced Bugs

4. Empirical Evaluation of the Model

5. Findings

6. Implications and Recommendations
46

Implications and Recommendations

● Most of the publications are not reporting the limitations of
current algorithms to identify bug-introducing commits.

● Studies must be aware of the risk of every assumption used.

● The reproducibility of the studies is discovery limited.

● The correct identification of the origin of the bug can help to
improve many areas in SE (bug detection, bug prediction,
automatic fix generation …) 47

Implications and Recommendations
● Bugs are not always introduced in the source code, and

this phenomenon should be further investigated.

● A bug has to be contextualized to understand when and
how it was inserted.

● The model provides a clear condition to determine if a
given algorithm for identifying the change introducing a
bug is correct or not when performing the identification.

48

Thesis’ Publications :
1. Bugtracking: A tool to assist in the identification of bug reports.

IFIP International Conference on Open Source Systems, 2016

2. How much time did it take to notify a Bug? Two case studies: ElasticSearch
and Nova.
IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics (WETSoM), 2017

3. Reproducibility and Credibility in ESE: A Case Study based on a Systematic
Literature Review of the use of the SZZ algorithm.

Information and Software Technology, 2018.

4. What if a bug has a Different Origin? Making Sense of Bugs Without an
Explicit Bug Introducing Change.
12th International Symposium on Empirical Software Engineering and Measurement, 2018

49

The problem

Solution

Evaluation

Summary

Findings

Findings

50

