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Abstract

Finding when bugs are introduced into the source code is important, because it is the first

step to understand how code becomes buggy. This understanding is an essential factor to

improve other areas related to software bugs, such as bug detection, bug prevention, software

quality or software maintenance. However, finding when bugs are introduced is a difficult

and tedious process that requires a significant amount of time and effort, to the point that it is

not even clear how to define “when” a bug is introduced.

All the bugs are not caused in the same way, and they do not present the same symptoms.

Thus, they cannot be treated as equal when locating the bug introduction moment. Some

bugs are not directly introduced into the system, and it is essential to distinguish the fact

of introducing a bug in a system and when a bug is manifested itself in the system. The

first case refers to the moment when the error is introduced into the project, whereas the

second case refers to the first moment when the bug manifests itself in the system due to

other reasons different from the insertion of buggy code. For instance, when the source code

is using, calling external APIs that changed without any previous notification, causing the

manifestation of the bug in some parts of the source code.

To distinguish between these moments, this dissertation proposes a model to determine

how bugs appear in software products. This model has been proven useful for clearly defin-

ing the code change that introduced a bug, when it exists, and to find the reasons that lead

to the appearance of bugs. The model is based on the concept of when bugs manifest them-

selves for the first time, and how that can be determined by running a test; it also proposes

a specialized terminology which helps to analyze formally the process. The validity of the

model has been explored with a careful, manual analysis of a number of bugs in two different

open source systems. The analysis starts with changes that fixed a bug, from which a test

to determine whether or not the bug is present is defined. The results of the analysis have
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VI ABSTRACT

demonstrated that bugs are not always introduced in the source code, and this phenomenon

should be further investigated to improve other disciplines of software engineering. Further-

more, the model has also been put in the context of current literature about the introduction

of bugs in source code. An interesting specific result of the model is that it provides a clear

condition to determine if a given algorithm for identifying the change introducing a bug is

correct or not when performing the identification. This allows (i) to compute the “real” per-

formance of algorithms based on backtracking the modified lines that fixed a bug, and (ii) a

sound evaluation of those algorithms.



Resumen

Es importante encontrar cuándo se introducen los errores en el código fuente, porque éste es

el primer paso para comprender cómo el código se vuelve defectuoso. Sin embargo, encontrar

realmente cuándo se introducen los errores es un proceso difı́cil y tedioso que requiere una

gran cantidad de tiempo y esfuerzo, hasta el punto de que ni siquiera está claro cómo definir

“cuándo” se introduce un error en el sistema.

Los errores no se causan de la misma manera, y no presentan los mismos sı́ntomas. Por

lo tanto, no pueden tratarse de la misma forma al identificar el momento de introducción del

error. Además, algunos errores no se introducen directamente en el sistema, y es esencial

distinguir el hecho de introducir un error en un sistema, del hecho de que un error se mani-

fieste en el sistema. El primer caso se refiere al momento en que se introduce el error en el

proyecto, mientras que el segundo caso se refiere al primer momento en que el error se man-

ifiesta en el sistema debido a otras razones diferentes de la inserción del código erróneo. Por

ejemplo, cuando se usa el código fuente, o se llama a APIs externas que fueron modificadas

sin notificación previa, lo que provocó la manifestación del error en algunas partes del código

fuente.

Para distinguir entre estos momentos, esta tesis propone un modelo para determinar cómo

aparecen los errores en los sistemas de software. Este modelo ha demostrado ser útil para

definir claramente el cambio de código que introdujo un error, cuando éste existe, y para des-

cubrir otras razones que conducen a la aparición de errores. El modelo se basa en el concepto

de identificar cuándo se manifiesta el error por primera vez, y cómo se puede determinar ese

momento a través de ejecutar una prueba de test; también propone una terminologı́a especial-

izada que ayuda a analizar formalmente el proceso. La validez del modelo ha sido explorada

mediante el cuidadoso análisis manual de una serie de errores en dos sistemas de código

abierto. El análisis comienza con cambios que corrigieron un error, a partir del cual se define
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VIII RESUMEN

una prueba para determinar si el error está presente o no. Los resultados del análisis han

demostrado que los errores no siempre se insertan en el código fuente y que hay diferentes

motivos para ello, por lo que este fenómeno deberı́a investigarse más a fondo para mejorar

otras disciplinas de ingenierı́a de software. Además, el modelo también se ha puesto en el

contexto de la literatura actual sobre la introducción de errores en el código fuente. Un resul-

tado interesante y expecı́fico extraı́do del modelo es que proporciona una condición clara para

determinar si dado un algoritmo para identificar el cambio que introduce un error es correcto

o no en la identificación. Esto permite calcular (i) el rendimiento “real” de los algoritmos

basados en el seguimiento de las lı́neas que han sido modificadas para corregir un error, y (ii)

evaluar esos algoritmos.
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B.3 Modelo teórico Propuesto para localizar errores . . . . . . . . . . . . . . . . 141

B.3.1 Definiciones: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



XII CONTENTS

B.3.2 Explicación del modelo propuesto: . . . . . . . . . . . . . . . . . . . 145

B.4 Como encontrar el BIC y el FFM . . . . . . . . . . . . . . . . . . . . . . . . 148

B.4.1 Resultados del TSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.4.2 Criterio para aplicar el TSB . . . . . . . . . . . . . . . . . . . . . . . 151

B.5 Objetivos y Problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.6 Metodologı́a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.6.1 Primera Etapa: Filtrado . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.6.2 Segunda etapa: identificar el BIC y el FFM . . . . . . . . . . . . . . 155

B.6.3 Resultados de las etapas . . . . . . . . . . . . . . . . . . . . . . . . 158

B.7 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.7.1 Reproducibilidad y credibilidad del algoritmo SZZ . . . . . . . . . . 159

B.7.2 Teorı́a de Inserción del error . . . . . . . . . . . . . . . . . . . . . . 164

B.7.3 Estudio Empı́rico: Aplicación de la teorı́a propuesta para localizar el

momento de introducción de un error . . . . . . . . . . . . . . . . . 167

B.8 Conclusiones y Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.9 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.10 Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177



List of Figures

1.1 Bug Report in ElasticSearch . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bug-Fixing Commit (ba5b5832039b591) in ElasticSearch . . . . . . . . . . 6

1.3 Affected areas of studying the cause of a bug . . . . . . . . . . . . . . . . . 9

3.1 Bug caused after changing the version of the software. . . . . . . . . . . . . 44

3.2 diff of the Bug-Fixing Commit . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Bug caused by an external artifact. . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 diff of the Bug-Fixing Commit. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Bug caused by the operating system where the code is being used. . . . . . . 46

3.6 Bug caused by an operating system where the code is being used. . . . . . . . 46

3.7 subversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 git-mercurial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 git-merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 git-rebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 git-squash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Example of changes committed in a file, the first change is the bug introduc-

ing change and the third change is the bug fixing change. . . . . . . . . . . . 56

4.2 The changes were committed by Alice, Becky and Chloe in different days. . 56

4.3 First and Second part of the SZZ algorithm . . . . . . . . . . . . . . . . . . 56

4.4 Example where semantic changes in the buggy line hide the bug introducing

change and the SZZ cannot identify it. . . . . . . . . . . . . . . . . . . . . . 59

4.5 Example where unchanged lines introduced the bug, and SZZ cannot identify

the Bug-Introducing Commit. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

XIII



XIV LIST OF FIGURES

4.6 Sum of the number of publications using the (complete) SZZ, SZZ-1 or SZZ-

2 by year of publication (N=187). . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Genealogy tree of the commit i, each commit shows a precedence relation-

ship with its descendant commits. . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Linear vision precedence in the master branch of the bug-fixing change i.

The colored commits belongs to the PCS(i) (orange) and DCS(i) (blue),

the black commit is the BFC and the gray commit is the initial commit of

the project. Notice that the commits are not sort in time because we are not

assuming a precedence set by dates. . . . . . . . . . . . . . . . . . . . . . . 85

5.3 The Bug Introducing Snapshot is the Bug-Introducing Commit . . . . . . . . 88

5.4 The Bug Introducing Snapshot is the Bug-Introducing Commit . . . . . . . . 89

5.5 The Bug Introducing Snapshot is the the First-Failing Moment . . . . . . . . 89

5.6 The first snapshot is the Bug-Introducing Commit . . . . . . . . . . . . . . . 90

5.7 Decision tree to identify the BIC and the FFC . . . . . . . . . . . . . . . . . 93

6.1 Overview of the steps involved in our analysis . . . . . . . . . . . . . . . . 100

6.2 Mean of previous commits, files and test files per Bug Report in Nova and

ElasticSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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Chapter 1

Introduction

Software evolution is a very active field of research in software engineering [Mens, 2008].

The term software evolution lacks a standard definition [Bennett and Rajlich, 2000], and it

is often used as synonym of the term software maintenance. The basic operations of soft-

ware maintenance are software modifications in order to, e.g., fix bugs, adapt when external

components change or add features. In 1974, Brooks states that “over 90% of the costs of

a typical system arise in the maintenance phase, and that any successful piece of software

will inevitably be maintained” [Brooks, 1974]. Almost 30 years later this statement has not

changed, [Erlikh, 2000] reports that software maintenance activities consume approximately

90% of the costs of a software system.

Finding the software bugs1 is one of the software maintenance activities that has oc-

cupied and will occupy much of the daily development and maintenance tasks of software

developers. Software systems have always contained bugs, and the industry average bugs

rate when it comes to creating software is around 1 to 25 bugs for every 1,000 lines of

code [McConnell, 2004]. Software bugs have an impact direct and indirect in the costs of

a company such as the customer loyalty, brand reputation, wasted time in development and

maintenance phases, etc. According to the report form the National Institute of Standards and

Technology in 2002, software bugs cost around $59.5 billion to the U.S. economy annually

[Planning, 2002]. This reveals the necessity to understand how bugs are introduced into the

source code to minimize the chance of defects being introduced.

The bugs have been studied since the early 70’s in software reliability [Jelinski and Moranda, 1972].

1Likewise Li et al. [Li et al., 2006], we use the words “bug” and “error” interchangeably

1
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Software reliability researchers developed models for predicting software reliability based on

the observation of software product failures. However these models ignore information re-

garding the developments of the software, the environmental factors or the method of failure

detection [Pham, 2000].

A common practice in Empirical Software Engineering (ESE) to understand how bugs

are introduced, is based on the study of their reports, and fixes. Specifically, the study of

the changes that fix a bug is an interesting practice which allows researchers to understand

the importance of locating when a bug was inserted since it has many implications in differ-

ent areas of Software Engineering and come up with new techniques that practitioners can

used. For example, determining why and how a bug is introduced may help to identify poten-

tial software modifications that introduce bugs [Śliwerski et al., 2005b], [Kim et al., 2006c],

[Zimmermann et al., 2006], [Thung et al., 2013], [Sinha et al., 2010]. This identification could

lead to the discovery of methods to avoid software bugs [Nagappan et al., 2006], [Hassan, 2009],

[Zimmermann et al., 2007], [Hassan and Holt, 2005], [Kim et al., 2007], or it may help to

identify who is responsible for inserting the bug. Identifying the responsable for inserting a

bug has the potential to propagate self-learning and peer-assessment processes [Izquierdo et al., 2011],

[da Costa et al., 2014], [Ell, 2013]. This study also help to understand how long a bug is

present in a code, thereby enabling researchers and developers quantify the software quality

and avoiding the misleading [Chen et al., 2014], [Weiss et al., 2007]. Due to these reasons,

the study of software bugs has been very active during the last decades.

Despite empirical investigations into software bugs of systems [Chou et al., 2001], [Sahoo et al., 2010],

[Kamei et al., 2013], [Chen et al., 2014], [McIntosh et al., 2016], [Wan et al., 2017], and the

development of a handful of techniques and tools to detect and prevent software errors

[Śliwerski et al., 2005a], [Hovemeyer and Pugh, 2004], [Thung et al., 2014], [Kim et al., 2007],

understanding what line or lines of the source code introduced the bug is still a challenge. The

researchers are merely adopting a popular assumption where it is established that the mod-

ified lines to fix the failure are likely the cause of the bug. Many researchers in ESE start

with this assumption to conduct studies on identifying the bug introduction change through

navigating back the modified lines of the change that fixed the bug.

However, there are factors that can cause a bug to be fixed in many different ways. For

instance, a bug fixed before release and a bug fixed during the planning phase are likely to be
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fixed in a different way [Murphy-Hill et al., 2015]. Thus, it is possible that the lines modified

to fix the bug were not contained the bug and backtracking them lead to erroneous results.

As consequence, studies in areas such as prediction and localization may differ their results.

Moreover, it is not always clear whether these studies and tools are defining what a “ true ”

bug is, “when” a bug is introduced, and what “‘to introduce” a bug means. Kim et al. argues

that the fact of introducing a bug depends on the definition of bug, and the future work should

verify whether the introduction of bug meets a given definition of bug [Kim et al., 2006c]. But

as fas as we know, nobody has conducted such verification. Moreover, Mens et al. claims that

“it is necessary to develop new theories and mathematical models to increase understanding

of software evolution, and to invest in research that tries to bridge the gap between the what

(i.e., understanding) of software evolution and the how (i.e., control and support) of software

evolution” [Mens et al., 2005].

In this thesis, we develop such a new theory envisioned by Mens et al. [Mens et al., 2005]

and Kim et al. [Kim et al., 2006c] to investigate and better understand how bugs appear in

software products. This theory describes a model of bug introduction and defines what a

“TRUE” bug is. The model is based on the concept of when bugs manifest themselves for the

first time, and how that can be determined by running a test[Rodrı́guez-Pérez et al., 2018b].

Furthermore, this model provide developers with means of validating whether the line iden-

tified as cause of the bug was in fact inserting the bug. For that, we use the information

on how failures are reported, discussed and managed in issue tracking systems. Although

useful information to understand the bug may be missed or not documented in these systems

[Aranda and Venolia, 2009], Panichella et al observed that very often in open source projects,

developers tend to use these issue tracking systems and mailing lists to discuss and communi-

cate the reasons and fixes of the bug with each other [Panichella et al., 2014a],[Panichella et al., 2014b].

Thus, these systems may provide a textual description regarding the symptoms of the bug that

helps researchers to understand whether the bug was inserted, and how it was inserted. Then,

this information can be linked to the source code system that provides the treatment through

changing the source code to fix the error, that helps researchers to understand how the bug

was fixed and whether this code caused the bug.



4 CHAPTER 1. INTRODUCTION

1.1 Context

This section aims to contextualize this thesis. There are two subsections that describe the

bug fixing process, and the well-known SZZ algorithm used to identify the changes that

introduced bugs. Then, we detail the research goals, and enumerate the contributions.

1.1.1 Bug Introducing and Bug Fixing

Bug introducing activity encompasses the process when a developer unintentionally intro-

duces an error while describing the problem or developing software artifacts. This error may

result in an non-desired event from the users’ point of view or a unexpected state in the sys-

tem which will be reported in an issue-tracking system such as GitHub, BugZilla or Jira, and

fixed in the software. On the other hand, the bug fixing process encompasses the process

when someone discovers a bug and creates the bug report that describes the malfunction.

Then, the bug report is assigned to a developer in order to produce a Bug-Fixing Commit

(BFC) that fixes the bug. The BFC might be seen as a possible way to determine why a

software component was behaving erroneously. Finally, once the bug is resolved, another

developer verifies the BFC and closes the bug report. Thus, the bug fixing process may help

to identify the part of the component that caused the erroneous behavior. When a BFC is

completed, it is a common practice to record this change in a Version Control System (VCS)

and add it to a repository.

Figure 1.1 is a bug report of ElasticSearch that uses GitHub as issue tracking system. On

the left side, the image (a) describes the bug, there is the label “Bug” which implies that

the issue should be a bug report. On the right side, the image (b) shows all the events that

transpired between the time when the bug was reported and when the bug was closed. There

is a comment explaining the root cause of the bug as well as the identifier of the commit that

fixed the bug.

Figure 1.2 (a) shows the message of the BFC #283162, this information is accompanied

by the diff of the files that were modified to fix the bug in GitHub. Figure 1.2 (b) shows the

log entry of this BFC from the git repository of ElasticSearch project. This commit log can be

obtained using the command git show and the number of the commit. Git’s log entry includes

2https://github.com/elastic/elasticsearch/commit/ba5b5832039b59
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Figure 1.1: Bug Report in ElasticSearch

the author, date, and files involved in the change. Additionally, a text message describing the

change is also recorded. This message is the same as the message on GitHub.

However, being able to identify the change in the code that first caused a bug is another

story, which, when analyzed in detail, proves to be in many cases difficult to tell. Researches

have made a lot of effort to understand and locate the changes that introduced bugs, but this

process is not easy because there are many factors that prevent the success of this process.

For instance:

1. Software systems and their architecture are continuously evolving and becoming more

complicated over time. This leads to problems that creep into a system and mani-

fest themselves as bugs [Le, 2016]. It also leads to the manifestation of failures in

unchanged parts [German et al., 2009].

2. The use of component-oriented development model leads to the implementation of

software products that are an assemblage of small components from many different

sources. This makes estimating the behavior of a complete system tedious when a

component behaves erroneously [Duraes and Madeira, 2006].

3. The accuracy of current approaches rely heavily on manual analysis where only experts

can judge whether the identified changes are responsible for inserting the bug. In most

of the cases, this analysis is impractical and there is no established way to know exactly
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Figure 1.2: Bug-Fixing Commit (ba5b5832039b591) in ElasticSearch

which line introduced the bug [da Costa et al., 2016].

Many studies in the area of software maintenance and evolution assume that “modified

lines in a BFC are likely the ones that introduced the bug” [Zeller, 2003], [Śliwerski et al., 2005b].

Although the software engineering community has suspected that this assumption is not al-

ways true, it is frequently found in the state-of-the-art literature. However there is not enough

empirical evidence supporting it and there still are little proofs to help researchers and prac-

titioners understand under what circumstances this assumption is not held. Recent studies

have demonstrated that there are limitations when flagging potential changes to be the bug
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introducing change [da Costa et al., 2016].

The consequences of the lack of understanding on which line or lines introduced a bug are

manifold. For instance, bug prediction and bug localization may not capture the true cause of

failures as these models are based on how developers have fixed bugs in the past. In addition

the evaluation may not be accurate when computing various metrics to evaluate the software

quality based on how many bugs practitioners fix, or how many bugs developers introduce

according to their experience and activities in the project. Thus, a complete understanding

of how, when and why bugs are introduced allows to improve advanced techniques that har-

ness information to learn patterns of these changes, to motivate the design and development

of better mechanisms, or to help in the automation of bug predictors that can estimate the

likelihood of fault introduction.

Fortunately, in modern software development, many traces can be retrieved on how code

changes, and how bugs are fixed. As a result, this trace information is at our disposal allow-

ing us to better understand the reasons why a change was required to fix a bug from the issue

tracking systems and VCS. The issue tracking system is used to record such issues as bug

reports, feature requests, maintenance tickets and even design discussions. Therefore, when

researchers want to conduct studies on bug introduction, they need to first identify the bug re-

ports from other kind of issues [Herzig et al., 2013], since analyzing all of them together may

lead to biased results [Bird et al., 2009a]. A bug report stores all comments and actions on the

issue tracking system, for example, discussions on a fix in the code review system, or in some

cases, information regarding the final BFC that closes the bug report. Depending on the policy

of each project and the bug tracking system used in the project, developers can tag each issue

with different labels3 in order to distinguish bug reports from other kinds of issues report. In

this way, the researchers may conduct more reliable researches when identifying BFCs, as

they can use the expertise criteria of developers to distinguish bugs from other issues. For ex-

ample, ElasticSearch has the policy to label the reports describing a bug with the tag “Bug”,

accelerating and ensuring that the researcher’s decision process is much more reliable. How-

ever, when projects do not use these tags or the bug tracking system does not allow them,

researchers have to use regular expressions to locate the bug reports [Śliwerski et al., 2005b]

3there are different uses for labels, the distinction between bugs and features is just an example

[Trockman, 2018]



8 CHAPTER 1. INTRODUCTION

or to use automatic classification systems [Antoniol et al., 2008]. Nevertheless, the vocabu-

lary that describes the cause of the reports varies from project to project making it difficult to

establish an unequivocal method to distinguish them.

The VSC Source code management systems also store the source code and their differ-

ences across different versions of the source code. They store metadata such as user-IDs,

timestamps, and commit comments. This metadata explains who, how, and when the source

code changed.

Empowered with all these information, the history of a software component can be nav-

igated to identify when a failure was occurring for the first time. This thesis uses these

information to cover the process of finding out what malfunction caused the change, and help

to identify what caused the bug in software products, and finally how it was fixed.

1.1.2 Brief Introduction to the SZZ Algorithm

In Software Engineering research, the SZZ algorithm [Śliwerski et al., 2005b] is a popular

algorithm for identifying the origin of a bug [da Costa et al., 2016]. It was proposed by

Śliwersky, Zimmermann, and Zeller in 2005 to identify the suspicious change to induce the

later fix. The algorithm identifies the Bug-Fixing Commit (BFC), then uses a diff tool to

compare the lines that differ between two revisions of the same file. In the SZZ, the authors

assume that the lines that have been removed or modified in the BFC are the ones containing

the bug. For this reason, SZZ traces back the lines through the code history (by means of the

annotate/blame4 command), to find when the changed code was introduced.

Even though the algorithm addresses two different problems, it can be split into two

main parts. The first part is related to the problem of linking to the VCS and the issue

tracking system to identify the BFC. In this part, the algorithm identifies -by means of a set

of heuristics- BFCs through employing a technique that matches commits with bug reports

labeled as fixed in the bug tracking system. Therefore, the algorithm uses regular expressions

to identify bug numbers and keywords in the commit messages that are likely to point out a

real BFC. The second part addresses the problem of identifying the change that introduced

the bug, the Bug-Introducing Commit (BIC). In this part, the algorithm employs the diff

functionality implemented in the source code management systems to determine the lines

4Annotate is used in SVN and blame is used in Git
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that have been changed (to fix the bug) between the fixed version and its previous version.

Then, using annotate/blame functionality, SZZ is able to locate which change modified or

deleted those lines for the last time in previous commit(s). These change(s) are flagged as

suspicious of being the BICs.

Despite being a fundamental algorithm in the community to locate the BICs, the results

obtained after its application are limited. Firstly, there is not enough empirical evidence sup-

porting the assumptions suggested by the SZZ, and the current evaluations are limited; Sec-

ondly, this algorithm fails in identifying the BIC in some scenarios, i.e, when new lines in the

BFCs cannot be traced back, these types of commits are removed from the analysis. Thirdly,

despite there are some studies facing challenges with this algorithm [Kim et al., 2006c],

[Williams and Spacco, 2008], [da Costa et al., 2016], all of them have the same assumption:

“ The lines changed to fix a bug are the ones containing the malfunction”.

1.2 Research Goals

Finding the cause of bugs has been an important topic during the last decades. The high

importance and impact of this topic is an essential factor to understand and improve other

areas related to bugs, such as bug detection, bug prevention, bug analysis and bug statistics.

Many questions related to solving the problem of identifying the BIC are proposed in this

dissertation. All the bugs are not caused in the same way, and they do not present the same

symptoms. Thus, they cannot be treated as equal when locating the cause of the bug.

Figure 1.3: Affected areas of studying the cause of a bug
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There are many studies and approaches based on backtracking the lines of a BFC to lo-

cate the origin of bugs. Nevertheless, these approaches are not using any meaningful model

that researchers might use to validate the “real” performance of the current state-of-the-art

algorithms. These algorithms attempt to locate the line that “contains the bug”. And re-

searchers cannot be sure about the meaning of “injecting a bug”, because any previous study

states the fact of introducing a bug, or the moment of when it was introduced. Consequently,

researchers are not sure whether the bug was introduced in the moment of inserting the lines

into the source code. For that reason, in this dissertation, we distinguish between bug mani-

festation moment (FFM) and the bug introduction moment (BIC). It is importan to establish

the distinction between both moments because although they can be the same, it is possible

that they may differ. For example, Alice inserted a line to the project that opens the html code

of a website, one weeks later Bob reported that the website was different from what users

expected and he fixed this line. 1) The bug introduction occurs whether the URL that Alice

wrote is incorrect, at this moment the error was introduced by Alice and it manifested itself

in the project, although it was not notified until one weeks later. 2) The bug introduction does

not exist whether the URL that Alice wrote is correct and due to other reasons, the website

has been removed or suspended by the server administrator some days before. In this sce-

nario there is no bug introduction moment when Alice wrote the line, but there is only a first

failing moment in which the bug manifested itself in the project. This first failing moment is

a software change done in the project after the website had been removed.

To address the lack of definitions and the need to validate the current algorithms, this

thesis proposes a theoretical model to define which changes introduced bugs into the source

code. This model assumes a perfect test which can be run indefinitely in the history of the

project to find out when the failure was introduced and whether the change was responsi-

ble for the bug or it was something external. Furthermore, this model may be used as a

framework to validate the performance of other approaches and researchers can compare the

effectiveness of different algorithms. Setting this framework is one of the principal values of

the thesis because the previous literature is not able to compute the “real” precision and recall

of the current algorithms.
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1.3 Contributions

The main four contributions of this thesis are outlined below.

1. A Systematic Literature Review (SLR) on the Use of the SZZ algorithm: We

have carried out a study to analyze reproducibility and credibility in Empirical Soft-

ware Engineering (ESE) with the SZZ algorithm as case of study. The aim of the

SLR is to obtain an overview of how authors have addressed the reproducibility and

credibility in the studies where they have used the SZZ algorithm. This SLR has

been published in the Information and Software Technology Journal in March, 2018

[Rodrı́guez-Pérez et al., 2018a] and the goals of the study are described below:

(a) An overview on the impact that the SZZ has had so far in ESE: The SZZ

algorithm has been shown to be a key factor to locate when a change introduced

a bug. Furthermore, to provide insight of how widespread the use of SZZ is, we

also addressed the maturity and diversity of the publications where SZZ has been

used in order to understand its audience.

(b) An overview of how studies that use the SZZ algorithm address the repro-

ducibility in their research work: Reproducibility is a crucial aspect of a cred-

ible study in ESE [González-Barahona and Robles, 2012]. Piwowar et al. state

that reproducibility improves the impact of research [Piwowar et al., 2007]. In

addition, when a research work incorporates reproducibility, it is more likely to be

replicated. However, there is evidence in the ESE literature that replicable studies

are not common [Robles, 2010]. By providing a replication package, the authors

facilitate others to replicate or to reproduce their experiment, which increases the

credibility of their results [Juristo and Vegas, 2009].

(c) An analysis of how these studies manage the limitations of the SZZ algo-

rithm: Limitations of SZZ are well-known in the research literature, and we

would like to analyze how many papers report any of the limitations or how they

address them. Therefore, we study whether authors are aware of that and mention

that some limitations of SZZ may affect their findings, be it in the description of

the method, in the threats to validity or in the discussion.
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2. A Theoretical Model to Identify the Bug-Introduction Changes: This dissertation

describes a comprehensive model to identify how bugs are introduced into the source

code. This model includes a set of definitions which formally helps to analyze the pro-

cess. Furthermore, it also includes an exploratory taxonomy that helps in understanding

how a bug is introduced and manifested into the source code.

The goals of the model are:

(a) A detailed definition of the Bug-Introducing Change and the First-Failing

Moment: The model introduces a general method to determine, unequivocally

and falsifiability, the first time that the software fails in relation with the bug-

fixing change, identifying the BIC when it exists.

(b) The criterion to apply the model: The model relies on the existence of a hypo-

thetical test that can be run indefinitely in each past version of a project to check

whether or not the code was buggy at this point. Since the hypothetical test is

not automatized, the criterion describes how it should be run and the possible

outcomes after applying it.

3. Empirical Study on the Application of the Proposed Model: This dissertation presents

an empirical study of the proposed theoretical model. This study analyses the publicity

of available data sources from two open source software projects, Nova and Elastic-

Search and describes a model to identify the bug introduction commit or to determine

whether it exists given a BFC. The goals of the empirical study are:

(a) The frequency of BFC induced by BIC in Nova and ElasticSearch: The em-

pirical study manually identifies whether a BFC was induced by a BIC, or whether

other reasons may explain the cause of the failure. Thus, the frequency of a BIC

being induced by a BIC in the two cases of study can be computed.

(b) The “gold standard” dataset: The proposed model enables to define the “gold

standard” to be defined where commits in the repositories are BIC. This dataset

favors the comparison with the performance of some state-of-the-art approaches

to computes the “real” false positives and false negatives.
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4. Quantification of the SZZ Algorithm: This thesis studies and contextualizes the cur-

rent problem of identifying a BIC given a BFC using algorithms based on backtracking

the lines that were modified to fix the bug. Furthermore, there is quantification of the

possible sources of error when identifying the BICs using the SZZ algorithm or some

variants of it. Since the thesis defines the “gold standard”, we can compute the “real”

performance of the SZZ algorithm when identifying the BICs because we are sure of

the “real” true positives and true negatives in their results.

1.4 Structure

The remainder of this thesis is organized as follows.

Chapter 2 provides a detailed description of the current state of the art to the reader. Then,

Section 2.2 mentions some studies in the filed of bug seeding and bug localization. Finally,

Section 2.3 details some bibliography related to the SZZ algorithm.

Chapter 3 addresses the current problem to identify the first moment when the system fails

by providing motivating examples and explaining the reasons why algorithms sometimes fail

when locating the Bug-Introducing Commits (BICs). Furthermore, this Chapter explains the

role of the VCS in the bug seeding activity.

Chapter 4 discusses the reproducibility and credibility of the studies that used the SZZ in

the ESE. This Chapter draws an overview of the impact that this algorithm has in the ESE

community and how researchers use it in different fields to identify the BIC.

Chapter 5 contains a detailed description of our proposed approach to deal with the inac-

curate algorithms to locate the moment when the bug manifest the failure for the first time.

This theoretical model allows for a better framing of the comparison of automatic methods

to find BICs. This model may distinguish between the bug introduction moment and bug

manifestation moment.

Chapter 6 applies the proposed theoretical model into two cases of study: ElasticSearch

and Nova. Both projects are open source projects with many thousand of actives developers.

Section 6.2 describes the methodology used in the studies to explain how manually identify

the bugs that were injected into the source code by navigating back into the lines of code that

were modified in the Bug-Fixing Commit (BFC) to fix the bug. Finally, Section 6.3 presents
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the results of the empirical study after applying the theory of bug introduction.

Chapter 7 details the threats to validity of this dissertation in Section 7.1 and then it

discusses each of the results obtained in this thesis in Section 7.2.

Finally, Chapter 8 draws some conclusions and concludes with the potential further work

to be done.



Chapter 2

State of the art

This chapter outlines an overall picture of the bug life cycle, bug seeding and bug localization

process in the Software Engineering (SE). The information from the bug seeding process may

be used in other areas of SE such as bug prediction, bug triage or software evolution. This

chapter describes the related work necessary to understand how this thesis fits into the current

literature. It explains the life cycle of a bug and the research works that other authors have

carried out to locate the origin of bugs.

2.1 Bug Life Cycle

In this section the main focus is on understanding the bug’s life cycle. Sommerville [Sommerville, 2010]

claims that it is not possible to avoid the unintentional introduction of bugs in the source code

because it is inherited in the process of software making. To help with this process, several

tools and products have been developed in order to reduce the number of bugs and improve

the software development process.

Generally, the open source projects leave the management of issues to specific tools such

as the issue tracking system. The open source systems studied in this dissertation use Launch-

pad and GitHub as their issue tracking systems, although the best-known issue tracking sys-

tem is Bugzilla1. For example, in Bugzilla the life of a bug starts when a developer or user

detects a wrong behavior and reports it to the system. The initial status of the report is UN-

CONFIRMED. Developers legitimatize the status by reproducing the symptoms described

1ww.bugzilla.org/

15
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in the report where it is confirmed, meaning that the bug is real. The status is changed to

NEW, and the bug is considered open from here onwards. An open bug’s status is changed

to ASSIGNED once it is assigned to a developer for fixing. The status of a bug changes

to RESOLVED when its resolution is either: FIXED, DUPLICATE, WONT-FIX, WORKS-

FORME, INVALID, REMIND, LATER. Next, a Quality Assurance (QA) person might verify

the resolution by either accepting it or rejecting it, turning the outcome to either VERIFIED or

REOPEN. Finally, when a bug is labeled as VERIFIED it can be marked as CLOSED which

concludes the bug resolution process. Although these steps describe the common process of

a bug, there are other possible paths in the life cycle of a bug.

During this cycle, the developers and users might discuss about the possible cause of the

bug or the reason why the project manifests the failure. Thus, the greater the understanding

of a bug’s life cycle, the greater the explanation of it origin.

2.1.1 Characteristics of bugs

With this respect, previous works have studied bug characteristics in large software sys-

tems [Chou et al., 2001], [Gu et al., 2003], [Ostrand and Weyuker, 1984], [Ostrand and Weyuker, 2002],

[Podgurski et al., 2003], [Sullivan and Chillarege, 1992], [Chen et al., 2014], [Li et al., 2006],

[Beizer, 2003], [Tan et al., 2014]. Recent papers have performed empirical studies to char-

acterize and classify the bugs in open source software depending on the different challenges

that arise in the bug finding process. Lu et al,. classified bugs in three categories depending

on their root cause: Semantic, Concurrency, and Memory [Lu et al., 2005]. Then, Li Tan et

al,. extended the previous root cause classification by adding more cases and introducing two

more dimensions, Impact and Software Component [Tan et al., 2014]. Table 2.1 shows the

relationships between the root cause and the fault, the impact and the failure, and the com-

ponent and the location of the bug [Li et al., 2006]. Finally, Chen et al., included additional

sub-categories after manually studying the impact of dormant bugs in software quality; dor-

mant bugs refers to errors that are introduced in a version of the software system, but they

are not found until much later [Chen et al., 2014]. Moreover, table 2.2 shows the classifi-

cation of the root cause of failures defined by [Asadollah et al., 2015], [Chen et al., 2014],

[Lu et al., 2005].

Many authors have used this classification to deal with different purposes regarding au-
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Table 2.1: Bug categories of the three dimensions: Root Cause, Impact, and Component

Dimension Subcategory Description

Root Cause

Memory Improper handling of memory objects.

Concurrency Synchronization problems

Semantic
Inconsistencies with requirements or

programmers’ intention

Impact

Hang Program keeps running but does not respond.

Crash Program halts abnormally.

Data Corruption Mistakenly change user data.

Perfor. Degradation Functions correctly but runs/responds slowly.

Incorrect functionality Not behaving as expected.

Other other impacts.

Software Component

Core Related to core functionality implementations.

GUI Related to graphical user inter- faces.

Network Related to network environment and communication.

I/O Related to I/O handling.
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Table 2.2: Categories of root causes of bugs found in [Asadollah et al., 2015],

[Chen et al., 2014], [Lu et al., 2005]

Category Subcategory Description

Concurrency

Data race Two or more threats access to write the same data

Atomicity-related A concurrent overlapping execution between two sequences

Deadlock A process depend by another process to proceed

Order Violation Violation of the desired order

Livelock A thread is waiting for an unavailable resource

Starvation A process indefinitely delayed

Suspension A calling thread waits for a long time

Memory

NULL Pointer Dereference Dereference of a null pointer

Memory leak Failures to release unused memory

Uninitialised Memory Read Read memory data before it is initialized

Dangling Pointer Pointers still keep freed memory addresses

Overflow Illegal access beyond the buffer boundary

Double Free One memory location is freed twice

Semantic

Missing Cases A case in a functionality that is not implemented

Missing Features A feature that is not implemented

Corner cases Incorrect or ignored boundary cases

Wrong control flow Incorrect implementation of sequences of function calls

Exception handling Do not have proper exception handling

Processing Incorrect Evaluation of expressions/equations

Typo Typographical mistakes

Design Issue Incorrect Design or API/function

Incorrect Documentation Incorrect/inconsistent documentation

Other Any other semantic bug
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tomatic approaches for software bug classification, as well as empirical and methodological

studies on the case of software errors, taxonomic studies for software bugs and the study of

bug characteristics in the OSS. Vahabzadeh et al,. attempted to understand the characteristics

of bugs in test code. In this study the authors also described the Environment category when

referring to tests that pass or fail depending on the operating system and the incompatibilities

between different versions of JDK. They discovered that incorrect and missing assertions are

the main root cause of dormant bugs [Vahabzadeh et al., 2015]. Jeffrey et al,. developed a

technique to automatically isolate the root cause of memory-related bugs; their approach is

effective in finding root causes when memory corruption propagates during execution until

a failure crash occurs [Jeffrey et al., 2008]. Wan et al,. studied 1,108 bug reports in order to

understand the nature of the bug, they also introduced other categories such as Security, En-

vironment and Configuration, Build, Compatibility and Hard Fork. Their findings indicated

that security bugs took the longest median time to be fixed, and also that the environment

and configuration bugs were one of the major types of bugs along with the semantic bugs

[Wan et al., 2017].

On the other hand, some authors have also considered using other characteristics to

classify bugs. Sahoo et al,. used the reproducibility of a bug, the observed symptoms

and the number of inputs needed to trigger the symptom and distinguish between deter-

ministic or non-deterministic bugs [Sahoo et al., 2010]. Chandra and Chen distinguished

environment-dependent from environment-independent bugs in the Apache, GNOME, and

MySQL [Chandra and Chen, 2000]. Zhang et al,. computed the bug fixing time and iden-

tified factors that influence it on three open source software applications. They found the

assigned severity, the bug description, and the number of methods and changes in the code as

impacting factors.

2.2 Bug Localization

To locate the origin of bugs, researchers have proposed two different procedures. Some

researchers use techniques starting with a Bug-Fixing Commit (BFC) in order to identify the

most recent change(s) that was modified to fix the bug. Other researchers use techniques to

locate root causes of software failures by analyzing program traces. These approaches do
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not rely on identifying the BFC, instead they attempt to find an association between program

failures and the execution of program elements.

In this section discusses the state of the art procedures to identify BFCs and the changes

that introduced the bug, also called Bug-Introducing Commits (BIC). Although this thesis is

mainly motivated by the techniques that use a BFC to identify the commit that caused the

bug, other existing and popular techniques are also discussed.

2.2.1 Identifying the Bug-Fixing Commit (BFC)

Previous works have attempted to identify BFCs in version archives. Mockus and Votta per-

formed an analysis to identify the reasons for software changes using historic databases; they

used the textual description in the log of a commit to understand why the change was per-

formed [Mockus and Votta, 2000]. Cubranić and Murphy recommended a practice that uses a

bug report number in the comment when the practitioners fix a bug report, thereby linking the

changes with the bugs [Čubranić and Murphy, 2003]. Finally, Śliwersky et al. proposed the

SZZ algorithm that links a version archive to a bug database in order to automatically iden-

tify and analyze fix-inducing changes [Śliwerski et al., 2005b]; the authors made use of the

previous work mentioned before, and also benefited from Fischer’s et al. work in which they

proposed a technique to identify references to bug databases in log messages, then used these

references to infer links from VCS archives to BUGZILLA databases [Fischer et al., 2003a],

[Fischer et al., 2003b]. In summary, the SZZ automatically links change logs and bug reports

using some heuristics which search for specific keywords (such a “ Fixed” or “Bug”) and bug

IDs (such a “#1234”) in change logs [Bachmann and Bernstein, 2009], [Mockus and Votta, 2000],

[Schröter et al., 2006], [Zimmermann et al., 2007]. This heuristic relies on “ developers leav-

ing hints or links regarding bug fixes in the change logs” [Wu et al., 2011].

However, the quality of the change logs are not ensured as they may incorrectly link with

the BFC from the version archives with issue reports that are not bug reports from the issue

tracking system. Bird et al. discovered that the absence of bug references in change logs

affected the number of missing links leading to biased defect information, thereby affecting

defect prediction performance [Bird et al., 2009a]. Researchers have further investigated this

misclassification during the past years as the heuristics might yield biased data, Bird and

Bachmann confirmed this problem and reported that 54% of bug reports are not linked to
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BFCs [Bachmann et al., 2010], [Bird et al., 2009a]. Bettenburg et al. noticed that the issue

reports often present incomplete and incorrect information [Bettenburg et al., 2008]. Anto-

niol et al. noticed that many of the issues in issues tracking systems did not describe bug

reports [Antoniol et al., 2008]. Herzig et al. found that around one third of the bug reports

that they manually analyzed were not describing a bug [Herzig et al., 2013]. Nguyen et al.

showed that even in a near-ideal dataset, the biases exists [Nguyen et al., 2010].

On the other hand, some researchers have attempted to mitigate the limitations and short-

comings of linking bug reports with BFCs [Herzig et al., 2013],[Tan et al., 2015]. Thus, prac-

tice, tools and algorithms have been developed in order to mitigate this problem. For instance,

GitHub supports linkage by automatically closing issues whether the commit message con-

tains the #numberOfIssue, many Free/Open Source Software projects have adopted as a good

practice to use keywords in their commit comments such as “# fix-bug -” when they are fixing

a bug, as it has been reported for the Apache HTTP web server7 in [Bachmann et al., 2010],

and for VTK8, and ITK9 in [McIntosh et al., 2016]. In addition, several authors have sug-

gested the used of semantic heuristics [Schröter et al., 2006], [Čubranić and Murphy, 2003],

[Zimmermann et al., 2007], while others have proposed solutions that rely on feature extrac-

tion from bugs and issue tracking system metadata. For Instance, Wu et al. developed ReLink

to automatically link bugs reports and commits based on the similarity between the texts in

both [Wu et al., 2011]. Bird et al. suggested manual inspections by developers in order to

identify missing links. They proposed the tool LINKSTER that helps developer to locate

possible links by providing query interfaces to the data [Bird et al., 2010]. Nguyen et al. pro-

posed the Mlink tool to mitigate some of the problems found in ReLink, for instance some

code changes in the commit are excluded and both issue reports and commit are used as plain

texts [Nguyen et al., 2012]. Le et al. continued working on the shortcomings of the previous

tools and develop RCLinker, which enriches commit logs. This approach extracts textual

and metadata features from issues and commits [Le et al., 2015]. As a consequence of these

efforts, the linkage problem has been addressed and its accuracy has drastically increased.

For example, FRlink, an existing state-of-the-art bug linking approach, has improved the per-

formance of missing link recovery compared to existing approaches, and it outperforms the

previous one by 40.75% (in F-Measure) when achieving the highest recall [Sun et al., 2017].
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2.2.2 Identifying the Bug-Introducing Commit (BIC)

Failure-inducing2 changes were first addressed by Ness and Ngo in 1997 [Ness and Ngo, 1997].

They described how to identify a single failure-inducing change using simple linear and bi-

nary search. Their goal lies in isolating failure-inducing changes by applying chronological

changes to a program until the fixed version presents the same wrong behavior as the next

version of the program. Despite this, the technique is able to reduced the computational cost

of testing each combination of changes introduced in the faulty version to locate the failure-

inducing changes. However, this technique fails when instead of one change, a set of changes

cause the failure. To deal with the issue, Zeller proposed the automated delta debugging

technique, which can determine the minimal set of failure-inducing changes by gradually in-

creasing granularity to identify the differences (that is, the deltas) between a passing and a

failing subset [Zeller, 1999].

Purushothaman and Perry measured the likelihood for small changes, particularly one-

line changes, to introduce errors. They refer to fix-inducing changes as dependencies which

are changes to lines of code that were changed by an earlier commit. They assume that if the

latter change was a BFC, the original change was erroneous. The study concludes that the

probability of a one-line causing a bug to be less than 4% [Purushothaman and Perry, 2004].

Baker and Eick also used a similar concept when referring to fix-inducing changes,fix-on-fix

changes. However, this concept requires both changes to be fixes. The paper describes a

graphical technique for displaying large volumes of software where directories and subdirec-

tories with high fix-on-fix rates were identified [Baker and Eick, 1994].

When a Bug-Fixing Commit exists: As previously mentioned, Śliwersky et al. proposed

the SZZ algorithm for the first time, it locates fix-inducing changes in version archives

[Śliwerski et al., 2005b]. Although the SZZ algorithm provides a technique to identify pos-

sible BICs, it has to deal with their incorrect identification. For this reason, many efforts

have been made to suggest improvements to the SZZ algorithm. First, Kim et al. developed

an algorithm that automatically identifies BICs; the algorithm is based on improvements of

the SZZ algorithm that remove false positives and negatives by using the annotation graph

technique instead of using VCS annotate to locate the lines changed in the bug-fixes. With

2Notice that some authors use failure-inducing as the concept for Bug-Introducing Commit
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this modification, the SZZ may avoid some false positives by not considering non-semantic

source code changes, (i.e. blank spaces, changes in the format or changes in the comments)

and by ignoring outlier fixes. After a manual validation, the new version of SZZ can re-

move about 38%-51% of false positives and 14%-15% of false negatives [Kim et al., 2006c].

Secondly, Williams and Spacco proposed another enhancement of the SZZ algorithm. The

authors suggested to use a mapping algorithm instead of the annotation graphs because they

are more precise when facing larger blocks of modified code in bug fixes; this new ap-

proach uses weights to map the evolution of a unique source line and ignores comments

and formatting changes in the source code with the help of DiffJ, a Java-specific tool. The

authors also verified how often the BICs were the true source of a bug in a small sample

size, where 33 of 43 lines mapped to a bug fix showed evidence of a bug being introduced

[Williams and Spacco, 2008]. Then, Da Costa et al. realized that during the last ten years

there was not much research conducted to evaluate the results of the SZZ, they proposed a

framework that evaluates the results of the different SZZ implementations based on a set of

criteria such as the earliest bug appearance, the future impact of changes, and the realism

of bug introduction. Their findings suggest that the previous SZZ enhancements tend to in-

flate the number of incorrectly identified BICs, and by using this framework, the practitioners

can evaluate the data generated by a given SZZ implementation and they might eliminate

unlikely BICs from their outcome [da Costa et al., 2016]. Campos Neto et al. worked on

improving the SZZ algorithm by disregarding refactoring changes as the BICs because they

do not change the system behavior. The authors empirically investigated the impact of such

refactoring in both changes, bug-fixing and bug-introducing. Their results indicate that their

approach can reduce 20.8% of the incorrect BICs when compared to the first SZZ approach

[Neto et al., 2018].

Other authors have created new approaches based on the same concept as SZZ algorithm,

by attempting to mitigate the incorrect identification of BICs. Kawrykow and Robillard de-

veloped DiffCat, a tool-supported technique to detect and remove non-essential changes in

the revision histories of projects. Their findings showed that up to 15.5% of system’s method

updates consisted entirely of non-essential modifications, [Kawrykow and Robillard, 2011].

Ferdian et al. looked at the root cause of the bugs by applying a combination of machine

learning and code analysis techniques, then verifying their approach through comparing the



24 CHAPTER 2. STATE OF THE ART

results with their manual analysis of 200 bug reports. This approach identifies the erroneous

lines of code that cause a chain of erroneous behavior in the program leading to the failure;

it has a precision of 76.42%, and a recall of 71.88% [Thung et al., 2013]. Servant and Jones

introduced the fuzzy history graph; this technique helps to represent the code lineage as a

continuous metric providing a balance of precision and recall. This technique performs bet-

ter over the evolution of the code when compared to other models [Servant and Jones, 2017].

Other techniques are related to dependence techniques. These approaches also attempt to

locate BICs; they address some of the shortcomings in the text-based approaches by examin-

ing the behavior of the changes by using a program dependence graph (PDG). Dependence-

based techniques compare the PDG for the BFC to the PDG for the previous version. First,

PDG only identifies removed dependencies, it only examines added dependencies when no

dependencies were removed and returns only the most recent version involved. Sinha et al.

introduced this technique in order to identify the BIC by analyzing the effects of BFC on pro-

gram dependencies. This is a significant improvement over the text approach used by the SZZ

algorithm, as this approach takes into account semantics of code changes, similar to previ-

ous work [Horwitz, 1990], [Binkley, 1992]. This make the approach to be more accurate and

applicable to a wider class of BFCs (i.e., changes that involve addition of statements). Their

results increased the precision and the recall of the fixes by 19% and 15% when compared to

the text approach [Sinha et al., 2010]. After this technique was introduced, many additions

and refinements were made. Davies et al. compared text-based and dependence-based tech-

niques for identifying bug origins. The authors suggested detailed improvements to identify

bug origins by combining both techniques [Davies et al., 2014].

When a Bug-Fixing Commit do not exist: Contrary to the previous authors, some au-

thors have studied the origin of bugs without identifying BFCs; and they have developed

different methods such as Delta Debugging [Zeller, 2002], [Zeller and Hildebrandt, 2002],

[Cleve and Zeller, 2005], [Misherghi and Su, 2006]; Spectrum Based Fault Location [Reps et al., 1997],

[Janssen et al., 2009], [Harrold et al., 2000], [Tiwari et al., 2011], [Abreu et al., 2007], [Jones et al., 2002];

or Nearest Neighbor [Renieres and Reiss, 2003], [Jones et al., 2002], [Abreu et al., 2007]. A

brief description of each method is given as follows.

Delta Debugging Zeller and Hildebrandt described the Delta Debugging algorithm for the
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first time in [Zeller and Hildebrandt, 2002]. This algorithm compares the program states of

a failing and passing run, while using binary search with iterative runs. The iterations stop

when the smallest state change that caused the original failure is identified. In other words,

this technique defines a method to automatize the process of making different hypotheses

about how changes affect output to locate failure causes. Gupta et al. used Delta Debug-

ging combined with dynamic slicing to identify the set of statements that is likely to contain

a faulty code [Gupta et al., 2005]. Cleve and Zeller [Cleve and Zeller, 2005] presented the

Cause Transitions technique and compared it to the Nearest-Neighbour technique. Their re-

sults suggest that, on the same set of subjects, Cause Transitions technique performs better

than Nearest Neighbour.

Spectrum Based Fault Location: A method used to locate faults from the identification of

the statements involved in failures was first introduced in [Reps et al., 1997]. This technique

usually takes as inputs two sets of spectra, one for successful executions and the other for

failed executions. It reports candidate locations where causes of program failures occur (e.g.,

lines, blocks, methods, etc.), which may be presented to debuggers. There are many spectra

such as node spectra, edge-pair spectra, edge spectra and block spectra. Jones et al. developed

the Tarantula system which provides a way to rank statements in terms of their likelihood

of being faulty. Furthermore, it has a graphical user interface that specifies a color for each

statement in the program depending on the suspiciousness of being buggy [Jones et al., 2002].

Abreu et al. investigate the diagnostic accuracy of the spectrum-based fault localization as a

function of several parameters using the Siemens Set benchmark. Their results indicate that

the superior performance of a particular coefficient is largely independent on test case design

[Abreu et al., 2007].

Nearest Neighbour. Renieres and Reiss used Nearest Neighbour queries to locate the

fault [Renieres and Reiss, 2003]. This technique contrasts a failed test with a successful test

which in terms of distance, is more similar to the failed test. It uses these two test cases

to remove the set of statements executed by the passed test case from ones executed by the

failed test case. A bug is then located whether it is in the difference set between the failed

run, and its most similar successful run. In case the bug is not contained in the difference

set, this technique continues constructing a program dependence graph, while adding and

checking adjacent un-checked nodes in the graph until the bug is located. This method is
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easily applicable since it only requires a classification of the runs as either incorrect or faulty

from the users.

Tools for locating bugs: A lot of effort have been made to develop practical tools that

assist in locating and detecting the bugs. Without trying to be exhaustive, a brief description

of some tools that have been used to find bugs in the source code is given.

FindBugs3 is an automatic detector for bugs with the same pattern in Java source code.

The user experience of this tool showed that it was helpful and most of the warnings fixed

in a specific organization were “hashcode/equals problems, serialization issues, unchecked

method return values, unused fields and constants, mutable static data, and null pointer deref-

erences” [Hovemeyer and Pugh, 2004]. HATARI is a plugin for Eclipse that determines how

risky is a change depending on the area of source code [Śliwerski et al., 2005a]. PMD4 tool is

a static code analyzer that checks the source code of a project in order to find possible bugs,

dead code, suboptimal code or overcomplicated expressions. It checks for patterns in the

abstract syntax tree of parsed sources files [Copeland, 2005]. Jlint5 is a tool that checks for

bugs, inconsistencies and synchronization problems in Java code [Artho, 2001]. FixCache

has a similar purpose, files and methods are saved and maintained in the cache; when a bug

is fixed, these elements are updated and the cause of the bug is identified. The cache can be

used to predict how likely a change in an area might cause another bug [Kim et al., 2007].

BugMem identifies project-specific bugs and suggest corresponding fixes, it uses a learning

process of bug patterns of project-specific bugs [Kim et al., 2006a]. OpenJML6 is a compile-

time checker tool that warns against potential runtime errors and inconsistencies between the

design decision recorded and the actual code. It is the successor of ESC/Java. The feedback

of users using this tool supports that it can detect real software defects [Flanagan et al., 2013].

BugLocalizer7 is implemented as a Bugzilla extension, and it uses information retrieval (IR)

based bug localization that computes similarities of the bug report with source code files

with the aim of locating the buggy files [Thung et al., 2014]. Commit Guru8 is a tool that

3http://findbugs.sourceforge.net
4http://pmd.sourceforge.net/snapshot/
5http://jlint.sourceforge.net/
6http://jmlspecs.sourceforge.net/
7https://github.com/SoftwareEngineeringToolDemos/FSE-2014-BugLocalizer
8http://commit.guru
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identifies and predicts suspicious buggy commits. The tool also provides downloadable ana-

lytics to users on the likelihood of a recent commit to introduce a bug in the future, the per-

centage of possible commits that may have introduced buggy code in their projects, among

others [Rosen et al., 2015].

2.2.3 Software Testing to Locate Faults

Software testing is conducted to provide information about the quality of the software or

service under test [Kaner, 2006]. The test techniques include the process of executing an

application with the purpose of finding software bugs before the software product is released.

Much work on software testing seeks to ensure the minimum human intervention by au-

tomatizing as much as possible the process, to make testing faster cheaper and more reliable.

Without trying to be exhaustive, this work can be understood in the following categories:

Automatic software repair: It is challenging because of its difficulty. It is focused on

two main fields, behavioral repair, and state repair. Behavioral repair address the issue of test-

suite based repair that states “ given a program and its test suite with at least one failing test

case, create a patch that makes the whole test suite passing” [Monperrus, 2014] and which has

been explored by the Genprog. Genprog is a seminal and archetypal test-suite based repair

system developed at the University of Virginia [Weimer et al., 2009], [Forrest et al., 2009]

whose evaluation in a later study claims that 55 out of 105 bugs can be fixed by Genprog

[Le Goues et al., 2012]. Currently, people are still working on improving the core repair

operators. On the other hand, the large research field of state repair address the issue of

recovery that focuses on “a system state that contains one or more errors and (possibly) faults

into a state without detected errors [Laprie, 1985].

Emulation of software faults: It is used to evaluate fault tolerance procedures, and to

assess the impact that a bug will have in the system. Durães and Madeira created a new

fault injection technique (G-SWFIT) after observing that a large percentage of faults can be

characterized with high accuracy, and that allows to use a small set of emulation operators

instead emulate the software faults with a big set, allowing accurate emulation of software

faults through a small set of emulation operators [Duraes and Madeira, 2006].
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2.3 Studies on Identifying the Origin of a Bug

The foundational role of locating a bug origin in Software Engineering resides in its transver-

sality. Once the origin of a bug is located, many different areas in Software Engineering

can benefit from the knowledge. They can deliver different studies with different outcomes

where practitioners can better learn practices to continue improving the current state of the

art about bug seeding and software engineering. Without attempting to be exhaustive in the

description, we offer several examples where authors have analyzed the origins of bugs with

different general purposes. Five different categories were selected based on the important

role of correctly identifying the BIC: bug prediction, bug localization, bug classification, bug

fix and software evolution.

Bug prediction: Bug prediction is aimed at supporting developers to identify whether a

change will be buggy or not. This area studies bug seeding and bug fixing activity as a poten-

tial source of prediction for further issues. For instance, Feng et al. collected the defect data

and attempted to build a universal defect prediction model for a large set of projects from

various contexts [Zhang et al., 2014]. Jiang et al. proposed a novel technique that produces

a personalized model for each developer; this model is used to predict bugs on future data

[Jiang et al., 2013]. Hata et al. developed a fine-grained version control system for Java in

order to conduct fine-grained prediction [Hata et al., 2012]. Kim et al. analyzed the version

history of seven projects to predict the most fault prone entities and files; they identified the

BICs at the file and entity level [Kim et al., 2007]. Zimmermann et al. predicted bugs in

large software systems such as Eclipse [Zimmermann et al., 2007]. Nagapan et al. associ-

ated metrics with post-release defects to build a regression model that predicts the likelihood

of post-release defects for new entities [Nagappan et al., 2006]. Yang et al. studied what kind

of BICs are likely to become a great threat after being marked as BFCs [Yang et al., 2014a].

Rosen et al. developed a prediction tool base that identifies and predicts risky software com-

mits [Rosen et al., 2015]. Kamei et al. used just-in-time (JIT) quality assurance concept

to build a model that predicts whether a change is likely to be a BIC [Kamei et al., 2013].

Fukushima et al. empirically evaluated the performance of defect prediction models based

on Just-In-Time cross-project [Fukushima et al., 2014].
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Bug Classification: Bug classification is aimed at supporting developers in classifying

whether a change is buggy or not. For example, Pan et al. described a program slicing

metrics to classify changes as buggy or bug-free. They use SZZ to mark files that have BICs

[Pan et al., 2006]. Kim et al. showed how to classify file changes as buggy or clean using

change information features and source code terms [Kim et al., 2008]. Thomas et al. intro-

duced a framework for combining multiple classifier configurations that improves the per-

formance of the best classifier [Thomas et al., 2013]. Ferzund et al. presented a technique to

classify software changes as buggy or buggy-free based on hunk metrics [Ferzund et al., 2009].

Kim and Ernst proposed a history-based warning prioritization algorithm that helps to im-

prove the prioritization of bug-finding tools [Kim and Ernst, 2007]. Nguyen and Fabio Mas-

sacci conducted an empirical study to validate the reliability of the NVD vulnerable version

data [Nguyen and Massacci, 2013].

Bug Localization: Bug localization is aimed at supporting developers in identifying where

a bug resides. Asaduzzaman et al. applied the SZZ algorithm on Android to identify the

BICs, they then used this information to look for problems during the maintenance upkeep

of the project [Asaduzzaman et al., 2012]. Schröter et al. built a data set that contains the

mapping between the bug reports and their BICs in the Eclipse project [Schröter et al., 2006].

Kim et al. developed a tool to find bugs using the bug fix memories, which also focused on

the knowledge of changes that fix bugs. The tool uses statistical-analysis to learn project-

specific bug patterns by analyzing the history of the project and then suggest corrections

[Kim et al., 2006a]. Wen et al. proposed the use of LOCUS, an IR-based bug localization tool

based on the analysis of software changes and contextual clues for bug-fixing. The perfor-

mance of LOCUS at source file level have significantly improved, on average around 20.1%

and 20.5%, as demonstrated in the results of MAP and MRR techniques [Wen et al., 2016].

Youm et al. developed BLIA, a statically integrated analysis tool of IR-based bug localization

that uses information from bug reports, source files and source code changes histories. The

authors claimed that this tool achieves better results than BugLocator, BLUiR, BRTracer and

AmaLgam [Youm et al., 2015].
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Bug Fix: Bug fix is aimed at supporting developers in improving the bug fixing process.

Researchers have studied who should fix a certain bug report [Kagdi et al., 2008], [Anvik et al., 2006]

based on previous changes of the same file. Another approach used by Guo et al. predicts

whether a bug report will be fixed. This approach is based on the study of different charac-

teristics and factors that affect the fix of bug reports in Windows Vista and Windows 7. This

study found that bugs were more likely fixed when they were reported by people with higher

reputation, or when they were handled by people on the same team [Guo et al., 2010]. Cin-

carini and Sillitti extended the previous study in an open source environment and confirmed

the results found by Guo et al. [Ciancarini and Sillitti, 2016]. Other authors have dealt with

assigning bug reports to individual developers, Baysal et al. developed an approach that uses

developer’s expertise, current workload and preferences to assign the appropriate developer

to fix a bug [Baysal et al., 2009]. Another common practice during the bug fixing process is

to compute the time required to fix a bug after it was introduced into the source code. Kim

and Whitehead computed the time to fix a bug in files of ArgoUML and PostgreSQL project.

Their results indicated that the median was about 200 days [Kim and Whitehead Jr, 2006].

Zang et al. developed a Markov-based method for predicting how many bugs will be fixed

in the future and the time required to fix them [Zhang et al., 2013]. Some authors have con-

ducted empirical studies to understand the usefulness of social platforms such as Twitter in

the bug fixing process [El Mezouar et al., 2017]. Finally, other authors, have studied the bug

fixing patterns by using the SCM systems, they focused on the semantics of the source code

[Pan et al., 2009].

Software Evolution: Software evolution is aimed at supporting developers in understand-

ing how a software evolves and which characteristics (authorship, time of commit, develop-

ers’ interaction. . . ) or patterns are implicated in the bug proneness. Kim and Whitehead com-

puted the time to fix a bug after it was introduced into the source code in ArgoUML and Post-

greSQL [Kim and Whitehead Jr, 2006]. Kim et al. also studied the properties and evolution

patterns of signature changes in seven software systems written in C, using SZZ to identify the

BICs [Kim et al., 2006b]. Eyolfson studied whether the time of the day and developer experi-

ence affects the probability of a commit to introduce a bug [Kamei et al., 2010]. Izquierdo et

al. researched whether developers fixed their own bugs [Izquierdo et al., 2011]; they also
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studied the relationships between experience and the bug introduction ratio using the Mozilla

community as case of study [Izquierdo-Cortázar et al., 2012]. Rahman and Devanbu at-

tempted to understand some factors that have a big impact on software quality such as owner-

ship, experience, organizational structure, and geographic distribution [Rahman and Devanbu, 2011].

Posnett et al. studied the effect of artifact ownership and developer focus on software qual-

ity. They discovered that more focused developers introduce fewer defects than less focused

developers[Posnett et al., 2013]. Bavota et al., carried out an empirical study in three Java

systems to investigate the extent of refactoring activities in introducing a bug [Bavota et al., 2012].



32 CHAPTER 2. STATE OF THE ART



Chapter 3

Context of the problem

This chapter attempts to explain in detail the whole context of the current problem with

identifying the precise moment when a bug was introduced into the source code of a software

system. It then describes the many reasons why the current state-of-the-art approaches are

not successful in correctly identifying Bug-Introducing Commits (BICs). Finally, this chapter

gives motivating examples to demonstrate the necessity for practitioners and researchers to

search for other more accurate methods to identify the moment when a bug is introduced into

the source code.

In the previous chapters of this thesis we have described the important role of correctly

identifying BIC. There are many reasons for the explanation of this special interest. From the

economic point of view, software bugs are costly to fix [Lerner, 1994] and they are highly

time-consuming [LaToza et al., 2006]. In 2009, the US National Institute of Standards and

Technology (NIST) estimated that the US economy earmarks $59.5 billion annually to fix

software defects and to reinstall systems that have been infected. Zhivich and Cunningham

reported that software developers use approximately 80% of the total 59.5 billion to identify

and correct defects [Zhivich and Cunningham, 2009]. From the research point of view, the

knowledge of where the bug has been first introduced has important implications in software

engineering disciplines as we have explained in Chapter 1. However, specific characteristics

of software evolution and maintenance complicate the correct identification process of the

BICs. For example:

• The complexity of software products: software systems and their architecture are con-

tinuously evolving and becoming more complicated over time; this may lead to prob-

33
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lems that creep into the system and manifesting as bugs [Le, 2016]. It may also lead to

the manifestation of failures in unchanged parts [German et al., 2009].

• The dependency of the source code with external artifacts: the component-oriented de-

velopment model leads to the development of software products that are an assemblage

of small components from many different sources. In this scenario, it will be tedious

to estimate the behavior of the whole system when one of its components behaves er-

roneously [Duraes and Madeira, 2006];

• The accuracy: the current approaches rely heavily on manual analysis to evaluate the

results with the restriction that only the experts can judge if the changes identified us-

ing such methods are the real causes of the bugs. Unfortunately, this analysis will be

impractical in most of the cases and there is no existing framework to correctly evalu-

ate the results obtained after using different approaches to locate the bug-introduction

moment [da Costa et al., 2016].

Thus, without a clear methodology to know exactly what line or lines created a bug, many

studies in the area of software maintenance and evolution start with the implicit assumption

that the line (or lines) that is being replaced in a bug fix is likely the cause for introducing the

bug. This assumption can be frequently found in the research literature, for instance in:

• “We assume that the last change before the fixing change was the change that intro-

duced the defect” [Cao, 2015].

• “A fix-inducing is a change that later gets undone by a fix” [Shippey, 2015].

• “The SZZ observes each hunk in the bug-fix and assumes that the deleted or modified

lines are the cause” [Shivaji, 2013].

• “The defect was caused in one of the artifacts that was later edited to correct the defect”

[VanHilst et al., 2011].

• “The lines that have been removed of modified in the Bug-Fixing Commit are the ones

where the bug was located” [Izquierdo et al., 2011]

• “We assume that the person who injected defects into a file is the person who changed

it” [Ando et al., 2015].
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• “We assume that faults are reported just after they are injected in the software”

[Yamada and Mizuno, 2014].

• “To trace backwards through the version history to identify for each of these lines the

last commit that has changed the line” [Prechelt and Pepper, 2014].

• “[The] [b]lame feature of Git is used to identify the file revision where the last change

to that line occurred” [Bavota and Russo, 2015].

• “We determine the defect-inducing change as the change that is closest and before”

[Wehaibi et al., 2016].

• “A line that is deleted or changed by a bug-fixing change is a faulty line” [Tan et al., 2015].

• “We mark those hunks as bug introducing in which we find the source code involved”

[Ferzund et al., 2009].

One of the key problems with the approaches when identifying the BIC is the assump-

tion that “the modified line in a Bug-Fixing Commit (BFC) is likely the one that intro-

duced the bug”. Although this assumption may appear reasonable at first glance given its

frequent presence in the research literature, there is not enough empirical evidence support-

ing it. Furthermore, recent studies have demonstrated the many limitations of this assump-

tion [da Costa et al., 2016] when flagging potential changes as BICs. In addition, the Chapter

4 of this dissertation details that even when the researchers were aware of using this assump-

tion and knowing full well of its limitations, they still use it in their studies. For example,

some research studies have commented on the threat when a fixing commit only adds new

lines, or when the line has been modified several times since its introduction, or when some

lines that fix the bug are not related with it:

• “It is possible that previously in the history of the inspected line a large addition of lines

has introduced this error, thus confusing the history of the line.” [Williams and Spacco, 2008].

• “There are some bugs introduced in one place, but fixed in another place” [Yuan et al., 2013].

• “Fix locations may inflate the warning false positive rate. Additionally, adding new

code may fix an existing warning” [Kim and Ernst, 2007].
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• “The SZZ algorithm used to identify Bug-Introducing Commits has limitations: it can-

not find Bug-Introducing Commit for bug fixes that only involve addition of source

code. It also cannot identify Bug-Introducing Commits caused by a change made to a

file different from the one being analyzed.” [Shivaji et al., 2013].

• “It is extremely hard to automatically understand the root of vulnerabilities.”

[Nguyen and Massacci, 2013].

• “In a fix of a crash-related bug, not all of the changes are aimed to address defects.

Some lines may be added because of a refactoring or an addition of a new feature.

These changes are hard to identify with an automatic approach.” [Jongyindee et al., 2011].

• “Additionally, it is not necessary that a bug may have been introduced in the most recent

CVS transaction that changed the relevant lines in the file.” [Abreu and Premraj, 2009].

However, researchers cannot be sure whether a BIC is the actual moment when a bug has

been introduced in the system, as the term bug is undefined, thereby making it impossible to

understand what is meant by the introduction of a bug. When the approaches place blame on

a line that is suspicious to contain the bug, this line should not be isolated from the whole

context of when it was introduced the first time. This is because based on this context,

researchers can understand whether the line that introduced the bug occurred at that particular

moment, or on the contrary, the line was correct in that moment but defected later due to

changes in other parts of the code causing it to manifest in that specific line. For example,

when a source code is using a third-party code, and it changes something in the API without

a previous notification, it could be possible that at some point the lines of the source code

manifests a bug. This however does not mean that the lines of the source are responsible

for inserting the bug, as they could be perfectly clean when they were first written into the

source code. As such, in this example, the bug has not been introduced in the previous lines

blamed for some approaches such as the SZZ, the bug has been caused by the evolution of a

third-party code.

The main problem lies in the current literature and how the act of introducing a bug is

defined as well as how the moment of its introduction is defined. It is possible that both

moments are the same, but it is also possible that they are different. The latter case has
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not been addressed in the actual state-of-the-art literature. Thus, the current heuristics and

approaches need to be extended; there is the necessity to build a model that contemplates

all the different scenarios in order to re-define the theory of bug introduction. Fortunately,

in modern software development many traces can be retrieved on how code changes, and

how bugs are fixed. Thanks to that, a lot of information is at disposal where when analyzed,

provides the means to understand the reasons why a change was required to fix a bug. Thus,

before building a model, we can use information from the source code management system,

the issue tracking system and the code review system to first understand the malfunction that

instigated change, then identify what problems in the source code were causing it, and finally

how it was fixed.

3.1 The Effectiveness of Current Approaches

Nowadays, approaches based on backtracking the lines of a BFC are not using any meaning-

ful model that researchers or practitioners can employ to validate the algorithms. The lack

of definition on what should be validated makes it difficult for researchers to describe what a

false positive, true positive, false negative and true negative is. These algorithms attempt to

find which commit introduced the bug, but there is no differentiation between which commits

introduced the bug and which commit did not introduced the bug. The current algorithms also

do not distinguish between the moment of introduction and the moment of manifestation. For

these reasons, researchers cannot be sure about what it means to introduce a bug. To mea-

sure the accuracy of their approaches, many of the researchers use the concepts of false/true

positives and false/true negatives without taking into account the real meaning of these con-

cepts. Nowadays, the approaches compute the precision and the recall using the following

definitions:

• True positive: Given a commit identified by applying one of the approaches in a BFC,

a true positive is when this commit last modified the buggy line(s) changed in the BFC.

This definition of true positive means that this commit is likely to be the cause of the

failure, but researchers cannot be sure whether or not it introduced the bug into the

system when the suspicious buggy line was first instroduced.
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• False positive: Given a commit identified by applying one of the approaches in a BFC,

a false positive is when this commit last modified the lines changed in the BFC, but it

is likely that the change did not insert a bug, although the algorithm flags it as a Bug-

Introducing Commit. For example, whether the commit introduced blank lines that

changed the format of a function by moving a bracket or adding a tabulation, added or

modified comment lines, or when it renamed a variable, this definition of false positive

implies that the commit is not the cause of a bug.

• False negative: Researchers have different perceptions of what a false negative is; Da

Costa et al. defined it as “a Bug-Introducing Commit that is not flagged as such by

SZZ” [da Costa et al., 2016]. Kim et al. assumed that their improved version of SZZ

is more accurate than the original, and computed the false negatives as ( |K−S|
K

), where

K is the set of BICs detected by their algorithm, and S as the set of BICs detected

by SZZ [Kim et al., 2006c]. Davies et al. defined it as “commits that introduced bugs

but which are not identified by the approaches”, and surprisingly, they did not find any

false negative in their study [Davies et al., 2014].

• True negative: Any commit that was not identified by the approaches and is not re-

sponsible for introducing the bug.

However, as mentioned earlier, these definitions of true and false positive are not com-

pletely correct, because they are not based on understanding whether the identified lines

introduced the error in the project at this location and time stamp. Thus, it is imperative

to establish proper definitions for the concepts regarding false positive, false negative, true

positive and true negative, as can be seen below:

• True positive: Given a commit identified by applying one of the approaches in a BFC,

a true positive is when this commit, that belongs to the repository, modified the source

code of a project and introduced the error which caused the later BFC.

• False positive: Given a commit identified by applying one of the approaches in a BFC,

a false positive is when this commit modified the source code of a project but did not

insert the error at this time. This means that in this moment, the lines were clean and as
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a consequence, this commit did not caused the BFC. Some examples of false positives

are described through the next paragraphs of this section.

• False negative: A false negative is when a commit introduced the bug in the source

code of a system and caused the BFC but the current algorithms cannot identify it by

means of their heuristics.

• True negative A true negative is when a commit that did not insert the bug in the source

code of a system and did not caused the later BFC is not identified by the current

algorithms.

Nevertheless, the approaches built on backtracking the lines of a BFC, search for the

last commit that touched the line(s) that was modified to fix a bug, the previous commit(s).

After applying these approaches to a BFC, there is a set of previous commits that can contain

one or more different previous commits. Thus, researchers have to decide which previous

commit from the previous commit set is causing the bug. However, it can be possible that

the BIC is one or none of the previous commit, and it is possible that none of them caused

the bug because a bug could have been either introduced in new lines in other parts of the

code, or a bug could have been introduced by an external artifact or because of a change in

the environment of the project.

The Systematic Literature Review described in Chapter 4 quantifies the limitations of the

current approaches to identify the BIC. These reasons are the following:

1. Identification of more than one previous commit: A BFC may have more than one

line edited (deleted, modified or added), and in cases where a developer changed more

than one line to fix a bug, it is possible that the previous commit of these lines were

different. Thus, when the approaches to find the suspicious BIC are applied, there may

be different previous commits to blame for the cause of the bug. The main problem in

this case is that the current state-of-the-art approaches do not provide any guidelines on

how practitioners or researchers should behave in these situations. Moreover, there has

been no clear explanation about the heuristics that have been used in the cases where

the scenarios come up. This might be a big source of false positives.

2. When only new lines are used to fix the bug: There are some bugs that are fixed



40 CHAPTER 3. CONTEXT OF THE PROBLEM

by simply adding new lines to the source code. This may occur when some ancestor

commit forgets to add lines to the source code. As a result, when the system fails,

the developers need to fix the bug by adding new lines to the source code. For exam-

ple, a commit may miss to add a null-pointer dereference. The fix adds a null-check

line, while the lines of the commit that have missed to add the code are not changed.

However, the current approaches remove these cases from their analysis because the

new lines cannot be tracked back. As a consequence, these approaches are not able to

identify the BIC which causes the presence of false negatives in these scenarios.

3. Changes in the environment or configuration: There are some bugs that manifest

themselves before a change in the environment or during the configuration. These kinds

of defects correspond to the bugs that lie in third-party libraries, underlying operating

systems, or non-code parts (e.g., configuration files). Thus, when one of the parts

changes without any previous notification to the developers, the system experiences

the failure, and the developers are required to change the lines that are affected by the

ecosystem or the configuration of the project to fix the project. The issue here is that

when the current approaches are applied, the previous commits are identified as the

BICs when in fact, they did not introduce the bug. This is because when the lines are

introduced the first time, they were initially correct for the ecosystem at that point in

the time. In these cases, the approaches are introducing false positives.

4. Multiple modifications of a line: The evolution of the source code of a project affects

the identification of BICs due to the necessity of the implementation of new require-

ments. When the source code of a new requirement is committed, the code might alter

the identity of the previous commit in a line. For instance, when the commit 123aa is

introduced into the function func, and later the commit 456bb inserts a new function-

ality into the project that modifies the function func by adding a new argument to it.

In these cases, the last commit that touched the line of the function func is the commit

456bb, and it may occur multiple times in the same line. The problem lies in whether

the commit 123aa was responsible for inserting the bug. In this scenario, the current

approaches cannot identify it, pushing the blame to the false positive commits as the

BICs, because they were the last commits that modified the line that is failing.
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5. Weak semantic level: A key factor in the correct identification of BICs is the compre-

hension of the changes made in each commit. The modifications of lines are addressed

for different purposes; some modifications are made to optimize the code while the

same behavior remains in the code, other modifications are made to rename variables

or functions or to remove dead code, while other modifications simply copy and paste

lines from other commits. All of these modifications are semantic, which causes the

approaches to identify false positive BICs. On the one hand, the false positive may oc-

cur because the real change that introduced the buggy behavior to the source code was

before the modifications, and that the semantic changes are hinting towards the real

cause. On the other hand, the false positive may occur because the approaches might

identify numerous, suspicious commits, when in fact they are simply semantic changes

and should instead be removed from the analysis.

6. A Bug-Fixing Commit that fixed more than one bug: Although it is not common for

a BFC to fix more than one bug, sometimes due to the close relationship between the

bugs or the dependency between them, researchers may find that a BFC closed more

than one bug report. This causes the approaches used to identify the Bug-Introducing

Commit to identify false positive commits even though the two bugs addressed in the

same Bug-Fixing Commit have been introduced in different commits.

7. Compatibility bugs: These kinds of cases correspond to the bugs that make a system

fail or pass depending on the particular CPU architecture, operating system, or Web

browser used. For example, user A never experiences a bug when using the project

under macOS, but user B who is using Windows has experienced the bug due to the

failure of the project using this OS. Thus, with these kinds of bugs it will not be fair to

lay the blame on a previous change or an ancestor change as the BIC, because the de-

velopers’ intentions and the circumstances of the moment cannot be known for certain

whether it will later fail when they submit the source code. In these cases, the current

approaches also identify false positives BICs.

8. Dormant bugs: Tse-Hsun et al. have investigated this type of bugs in depth. The

characteristics of the bugs is that when they are introduced in an earlier version of

the system, they are not reported until much later. Thus, when the current approaches
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are applied to the bugs to find the BIC, the result are false positive. Sometimes, lines

fixed in the BFC are not responsible for introducing the bug. This could be due to the

natural evolution of the source code where other developers may have modified some

parts of the dormant buggy code. The approaches identified as a result identifies the

modifications as the BIC.

It is clear that the effectiveness of the current approaches is not up to standard for prac-

titioners and researchers. This problem lies mainly on how these approaches work. The ap-

proaches identify the chronologically latest modification of a fixed line as the bug-introducing

version, but it is now apparent in many scenarios, such as the explained before, that these ap-

proaches fail because of this reason. This thesis explores a new concept of the first failing

commit, based on the hypothetical idea that there is a perfect test and it can be run forever

in the past. Let’s take Vn as a version and t as the perfect test with a coverage of 100%. A

fault can be revealed given a fixed version Vn+1. Assuming that t is an oracle that tests how

the behavior of the fixed lines should be in Vn and previous versions of Vn, it is possible to

identify the buggy version regardless of whether the test fails. For instance, as the test knows

what the bug is and what should be the correct behavior of the source code at that point, if the

test passes, it means that this version did not introduce the bug, and it continues to backtrack

the version history of the source code. The approach starts with the version Vn-1, where it

executes the test in each version to identify the version that fails. This version will be the

FFM and also the BIC depending on other factors. More details are found in Chapter 5.

3.2 Motivating Examples

In this section we present real motivating examples found in the projects that were analyzed.

These examples clearly describe the necessity to distinguish the difference between the BIC

and the FFM. There are different kind of bugs, some of them were directly introduced but

others have manifested themselves in the system without the necessity of being introduced.

Thus, the nature of bugs provide a guide to find other approaches to identify the first change

that manifested the malfunction, enabling the understanding of whether the change also in-

troduced the bug. The next examples support this urgent necessity by explaining what caused

the bug when the bug manifests itself and how other approaches fail to identify the BIC. It is
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important to keep in mind that the heuristics of the most famous approaches to identify BIC is

through looking at the previous changes that touched the fixed lines in the BFC. In case there

are more than one change, these approaches use heuristics to determine which lines contain

the fix that caused the bug. It may be one, or a combination of many. It could also be none of

the previous changes or none of the ancestral changes. In fact, the bug cannot be caused by

any previous commit or any ancestor commit because the bug was caused by a change in an

external artifact that the project uses.

The first example is the bug #38201 from ElasticSearch. Figure 3.1 (a) is the bug re-

port description. Figure 3.1 (b) is the description of its BFC 565c212732. The bug report

describes a bug when setting permissions for subdirectories in Debian. According to the

description, the bug is due to a wrong configuration in a new scenario where subdirectories

exist. For a period of time in ElasticSearch, there was no possibility of creating subdirectories

in /etc/elastcisearch. As a result the files under /etc/elastcisearch can be set with permission

0644, but at some point in the history of the project, this changed and it was possible to have

subdirectories under /etc/elastcisearch. For this new configuration, it is not reasonable to

have the setting with permission 0644, in which case the bug manifested itself in the system.

When looking at Figure 3.2, it is clear that to fix the bug, the developer modified line 37 and

also added a new line. However, the modification of line 37 does not mean that the line was

buggy at the moment of its insertion, but rather due to other factors (i.e., a new configuration);

this line merely manifested the failure. When the current approaches are applied to the bug

in order to find the BIC, all of them will fail because they will blame the previous commit

bccf0b1 as the BIC when in fact it did not introduce a bug. Hence, in this case it is impossible

to pinpoint a concrete change as the BIC, because the bug depends on the moment when the

developers decided to allow subdirectories under /etc/elastcisearch. For this reason it is only

possible to identify the FFM.

The second example is bug #35513 which is also from ElasticSearch. Figure 3.3 (a) is

the bug report description and (b) is the message description of its BFC. Below, Figure 3.4

shows the code in the BFC 8668479b94. The bug report describes a bug when downloading

1https://github.com/elastic/elasticsearch/issues/3820
2https://github.com/elastic/elasticsearch/commit/565c21273
3https://github.com/elastic/elasticsearch/issues/3551
4https://github.com/elastic/elasticsearch/commit/8668479b9
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Figure 3.1: Bug caused after changing the version of the software.

Figure 3.2: diff of the Bug-Fixing Commit

a site plugin from GitHub. In this case, the dependency of the source code of ElasticSearch

on a third-party as GitHub is what caused the bug. At some point the API of GitHub changed

and, as a consequence, the plugin to download URL from the master zip file does not work,

as a result the BFC will have to pass the path of GitHub in order to fix the bug. In Figure 3.4,

it can be observed that to fix the bug, the developer modified two lines 182 and 196. These

modifications however do not mean that the lines were inserting a bug at the moment of the

change, but these lines manifested the failure due to other factors (i.e., a change in a third-

party). Thus, as in the above example, none of the previous commits were inserting the bug,

so it can be only identified after the change when the bug starts to manifest, meaning it is

only possible to identify the FFM.

Finally, the last example is the bug #13058975 from Nova. Figure 3.5 shows the descrip-

5https://bugs.launchpad.net/nova/+bug/1305897
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Figure 3.3: Bug caused by an external artifact.

Figure 3.4: diff of the Bug-Fixing Commit.

tion of the bug report in Launchpad. According to this report, the bug was caused by an

incompatibility between the software and the hardware used. The bug appeared when an

option was enabled by default in the VMs; this option depends on the underlying hardware.

Thus, when a user has Windows Server 2012, this option is enabled and it causes the Hyper-V

driver to not be aware of the constraint, therefore it becomes impossible to boot new VMs.

Figure 3.6 shows the BFC that modified line 92 and introduced two new lines into the source

code. The modification added a new argument into a function. This argument is used in the

added lines to check the constrain that caused the bug. Thus, the change that introduced the

modified line in the BFC cannot be labeled as the BIC. This is because the bug manifests

depending on the environment. In this example, the current approaches also identify a false

positive BIC, because it was correct in the moment of their insertion, while assuming that the
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developers were not aware of this issue and their intentions were not to make the software

compatible in all the possible scenarios.

Figure 3.5: Bug caused by the operating system where the code is being used.

Figure 3.6: Bug caused by an operating system where the code is being used.

From the demonstration of the concrete examples from ElasticSearch and Nova, it is

clear that there are cases where the effect of the external changes, the new requirements and

incompatibilities are what caused the failure. These bugs self-manifest without the necessity

of having any previous or ancestral changes to introduce the bug into the source code. Hence,

in order to find the origin of a bug, not only the fixed lines in the Bug-Fixing Commit have to

be taken into account, the dependencies or ecosystem of such lines must also be considered.

It is important to also note that there is no sense to lay the blame on a change as the cause of

the bug, because they did not introduced them. However, only the fist change that manifest
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the bug may be defined within the context of a concrete test system that contains all the

dependencies.

3.3 Introduction of Version Control Systems

This thesis has considerable interest in version control systems (VCS), since it provides re-

searchers and practitioners with all the necessary data to analyze and understand whether the

moment when a bug is introduced the first time is also the moment when the bug manifests

itself in the project for the first time. Thus, it is important to understand how the VCS work

and what are the limitations these systems present in order to find the BIC. In this subsection

we explain how developers and practitioners have been using them over the last decades and

how some of their characteristics affect in the identification of BICs. Furthermore, there is a

special interest for these systems because the selected projects to be analyzed in this thesis

use a VCS.

VCS were developed to coordinate the shared access between many developers to the

documents and files. These systems allow for simultaneous development of many branches

and can detect any change committed in the source code. Then, these changes are saved along

with the information of the timestamp and the identifier of the developer that make them. The

VCS of a project keeps track of every modification to the source code and allows developers

to turn back to any previous moment and compare earlier versions of the code. They can also

revert to the last modification or return to a specific version of the project.

The most common use of these systems is to develop software, but they are also used

in content management systems. The best-known VCS are Apache Subversion (SVN) and

Git. The web-based hosting service for Git is GitHub6, whereas RiouxSVN7 hosts SVN.

Although, Mercurial8, Bazaar9 and CVS10 are also well known. These VCS can be classified

into two classes; Centralized VCS that keep the history of changes on a central server where

everyone requests the latest version and pushes the latest changes to. Distributed VCS, which

6https://github.com/
7https://riouxsvn.com/
8https://www.mercurial-scm.org
9http://bazaar.canonical.com/en/

10https://www.nongnu.org/cvs/
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is when everyone has a local copy of the entire repository. Thus, it is not necessary to push

changes of your work all time, and it allows for anyone to sync with any other team member.

SVN is a centralized VCS with a unique central repository which hosts all the data for the

users. This prevents two users to edit a file at the same time, and also to push every single

change immediately. Figure 3.7 shows how an SVN project works. In the picture there are

three developers with access to modify the files; when developer A modifies a file she has to

push the changes to the central repository. Developer B and C only have the new state of the

project after pulling the central repository, furthermore they cannot make any changes to the

same file as developer A. While developer A is making changes to a file, other developers are

unable to make any modification until developer A finishes and pushes the changes.

Figure 3.7: subversion

On the contrary, Git is a decentralized VCS, it has a unique central repository but each

developer has their own local repository. Thus, developers can push their code to their private

repository, while getting all the benefit of VCS. They can make their code better after some

changes, before pushing the changes from their repository to the central repository and letting

other people use their new code. Figure 3.8 presents how a Git project works, in the picture

there are three developers with access to modify the files, each developer has a local copy of

the central repository in their computer. Thus, developer A, B and C can modify the files as

many times as they want before pushing the changes to the central repository. This may cause

the developers to be in different states of the same project in their local repository because

they have not pushed or pulled frequently. In Git, the same files can be modified at the same

time, however if the developers have changed the same line, the system enters into a conflict
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that has to be solved before developers can continue committing changes.

Figure 3.8: git-mercurial

Unfortunately, the current approaches used to identify the BICs are not understood for the

real moment of inserting a buggy line in the source code, the cause of the bug, and it force

practitioners to apply these approaches to all the projects without regard for the nature of the

bug, the dependencies of the bug or even whether they use SVN or Git. It is important to

understand why the VCS are relevant when using the approaches to find the BIC, specifically,

because some of the approaches were developed to be used in SVN and they understand the

branches in a different way than Git. For example, a branch in Git is only a pointer to some

commit which can move and it causes the complete loss of the previous states whereas this

is impossible in SVN. In other words, git does not keep the relationship of the changes in

time, thus the approaches that use temporally windows to remove false positives or have faith

that the precedence between commits is set by dates are not suitable for Git. Furthermore,

another characteristic of Git is the wide variety of commands at our disposal such as git diff,

git remote, git bisect or git blame. However, some other options such as git merge, git rebase

or git squash can alter the natural order of the commits, in the sense that when the history of

the commits are viewed using git log, it may occur that the commits are not sorted by dates

as presumed in the beginning. Hence, the use of Git also can affect the correct identification

of BICs, and since the project analyzed in this thesis uses Git as VCS. How these command

affect the identification of the origin of a bug is described in detail.

To better understand how Git might affect the identification of BIC, this thesis explains

three common scenarios with different commands available in Git. All of the scenarios use
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the same simple example. In the example, the repository only has two diverging branches,

the master branch and the feature branch. The commit hashes11 are represented with integers,

and in addition, these integers also represent timestamps, where a smaller number means an

earlier commit.

Git Merge: The first scenario is when a developer uses git merge. This command is used

to create a new commit. This new commit has two different parents and it is the only commit

with this characteristic. The only time that git merge does not create a new commit is when

the developer uses the fast-forward merge command. This situation occurs when there are

no commits in another branch. Figure 3.9 shows the repository before and after the merge.

In this case, to see the precedence between commits, git log can be typed after merging the

branch and the result is a linear log sorted by date: 7,6,5,4,3,2,1.

Figure 3.9: git-merge

Git Rebase: The second scenario is when a developer uses git rebase. This command

recreates the work made from one branch onto another. For example, if a developer wants to

rebase the master branch in the feature branch, for every commit that the master branch has

that is not in the feature branch, a new commit will be created on top of the feature branch.

The Figure 3.10 shows the output before and after the rebase from master branch onto the

feature branch. In this case, git rebase has moved changes 3 and 4 to the master branch, and

it has changed the hash in order to add a new one. In this case, to see the precedence between

commits, git log can be typed after rebasing, the result is a linear log that is not sorted by

date: 8, 7, 6, 5, 2, 1.

11a unique 40 character string generated by the SHA-1 algorithm which takes some data as input and generates

the hash
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Figure 3.10: git-rebase

Git Squash The third scenario is when a developer uses git squash. This command takes

a series of commits and squashes them down into a single commit. The main problem of

this option is that the authorship of each squashed commit is lost, because these commits

disappear from the history. Figure 3.11 shows the output before and after squashing commits

5 and 6 from feature branch onto master. In this case, Git Squash has combined changes 5

and 6 to create a new commit 7, this commit is then merged with the master branch. In this

case, to see the precedence between commits we can type git log after squashing, the result

is a linear log that is sorted by date: 7, 4, 3, 2, 1.

Figure 3.11: git-squash

At the end, the VCS facilitates the interaction between developers when a large number of

them work in the same project. They are even more useful when the developers are distributed

around the world working in different time zones. However, it must be kept in mind that

in order to find the BIC, some available options in Git might hint the real moment of bug

introduction because some commands such as git merge, git rebase or git squash might alter

the natural order of the commits and their origin.
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Chapter 4

Reproducibility and Credibility of the

SZZ

Reproducibility of Empirical Software Engineering (ESE) studies is an essential part for im-

proving their credibility, as it offers the opportunity for the research community to verify,

evaluate and improve their research outcomes where concerns related to the reliability of the

results may arise. Furthermore, it is one of the fundamental characteristics of the scientific

method [González-Barahona and Robles, 2012]. Juristo and Vegas state that reproducibility

“is important to increase and consolidate the body of empirical knowledge” [Juristo and Vegas, 2009],

and Robles shows that reproducibility may be hindered by many factors [Robles, 2010].

Through this thesis, we adopt the definition of reproducibility by Madeyski and Kitchen-

ham [Madeyski and Kitchenham, 2017] which claims that “reproducible research is the ex-

tent to which the report of a specific scientific study can be reproduced (in effect, compiled)

from a reported text, data and analysis procedures, and thus can be validated by other re-

searchers”. Although there are differences between reproducibility and replication, we as-

sume that a research work is more likely to be replicated when it incorporates means of

reproducibility. However, reproducibility (and by extension credibility, since multiple repli-

cations of an experiment increase it [Juristo and Vegas, 2009]) may be a challenging work, as

access to data sources, use of specific tools, availability of detailed documentation has to be

handled. Thus, detecting elements that my hinder reproducibility should help strengthen the

credibility of the empirical studies [Perry et al., 2000].

This chapter addresses how the scientific practice of the ESE research community affects

53



54 CHAPTER 4. REPRODUCIBILITY AND CREDIBILITY OF THE SZZ

the reproducibility and credibility of the results of studies that use the SZZ algorithm, pub-

lished in 2005 by Śliwerski, Zimmermann and Zeller [Śliwerski et al., 2005b] to detect the

origin of a bug. The goal is to give a detailed description of the algorithm and explain its

limitations and enhancements; then we detail the Systematic Literature Review (SLR) in the

credibility and reproducibility of the SZZ. Notice that this section is based on the manuscript

“Reproducibility and credibility in empirical software engineering: A case study based on a

Systematic Literature Review of the use of the SZZ algorithm” published in the Information

and Software Technology Journal. Regarding further details about this section, please refer to

the paper.

4.1 Description of the SZZ algorithm.

In software engineering research, the SZZ algorithm is a popular algorithm for identifying

Bug-Introducing Commits [da Costa et al., 2016]. SZZ relies on historical data from version

control systems and bug tracking systems to identify change sets in the source code that

introduce bugs. The algorithm addresses two different problems. The first problem is related

to the linkage between the VCS and the issue tracking system in order to identify the Bug-

Fixing Commit; the second problem is related to the identification of the Bug-Introducing

Commit.

In the first part, the algorithm identifies, by means of a set of heuristics, Bug-Fixing

Commits through using a technique that matches commits with bug reports labeled as fixed

in the bug tracking system. Therefore it uses regular expressions to identify bug numbers

and keywords in the commit messages that are likely to point out a real bug fixing change.

This is possible since many projects have adopted the policy of recording the bug report

number in the message of the commit that fixed the bug. Thus, the algorithm splits every

log message into a stream of tokens to find the potential bug number with the use of regular

expressions. For instance, the algorithm looks for keywords such as fix(e[ed]), bugs, defects,

patch followed by a number.

The second part of the algorithm is concerned with the identification of the Bug-Introducing

Commit(s). The algorithm employs the diff functionality implemented in source code man-

agement systems to determine the lines that have been changed (to fix the bug) between the
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fix commit version and its previous version. Then, using the annotate/blame functionality,

SZZ is able to locate who modified or deleted those lines for the last time in previous com-

mit(s), and, whether they were committed before the bug was reported; those change(s) are

flagged as suspicious of being the Bug-Introducing Commit(s).

As an example, Figure 4.1 shows three different snapshots o at different times and Fig-

ure 4.2 shows when and who changed the code in each commit. The first change is made by

Alice on the 1st of June where 12cf3s, is the Bug-Introducing Commit; the bug is introduced

in line 21 because the condition for the if statement is used incorrectly. The bug was then

reported on the 2nd of June. After that, Becky made the second change on the 3rd of June,

4asd23f, which added code to the foo() function in lines 24, 25 and 26. Finally, the third

change, 21esd33 is made by Cloe on the 5th of June. The change fixed the bug by modifying

two lines: the buggy line 21 and the clean line 25. In the Bug-Fixing Commit, the modifi-

cation of line 25 was purely semantic because the line retains with the same behavior from

before its modification, in both cases the variable bar is incremented by one.

Figure 4.3 shows how the algorithm works. First, after the report of the bug notification

#159 in the issue tracking system, the algorithm identifies the Bug-Fixing Commit 21esd33

by looking in the logs for a commit with the commit message containing bug number #159.

After that, the second part of the algorithm searches for the Bug-Introducing Commit by

using the diff tool and annotate/blame tool in each of the lines modified in the Bug-Fixing

Commit. In this example, lines 21 and 25 have been changed in the Bug-Fixing Commit in

order to fix the bug, thus both lines are marked for suspicion of being the ones where the

bug was introduced. These lines have been introduced in two different commits, however,

as line 25 was introduced in a commit after the bug was reported, the algorithm removed it

from the list of suspicious Bug-Introducing Commits. Consequently, only the commit that

last modified line 21 can be blamed as the Bug-Introducing Commit. Thus, in this case, the

SZZ algorithm correctly points out that 12cf3s is the bug introducing change.

Unfortunately, the algorithm does not always behave as demonstrated in the above ex-

ample. In some scenarios, the practitioners can notify some of the shortcomings which may

cause the malfunction. These shortcomings, as well as some examples of the malfunction of

the SZZ are detailed in the next section.
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Figure 4.1: Example of changes committed in a file, the first change is the bug introducing

change and the third change is the bug fixing change.

Figure 4.2: The changes were committed by Alice, Becky and Chloe in different days.

Figure 4.3: First and Second part of the SZZ algorithm
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4.2 Shortcomings of the SZZ Algorithm

Despite SZZ being largely used in ESE to locate bug origins, it presents some shortcomings

which makes it error prone. Table 4.1 offers a detailed overview of the shortcomings in SZZ

as reported in the literature. Some of them have been previously explained in the Chapter 3,

however, in this section they are described with examples based on the illustrative Figure 4.1.

In the first part of the algorithm the limitation lies in how bug reports are linked to

commits. If the fixing commit (in the versioning system) does not contain a reference to

the bug (usually the reference is the unique id assigned by the bug tracking system, but it

could be certain keywords as well), it is very difficult to link both data sources. Sometimes

this linking is incorrect as the Bug-Fixing Commit do not correspond to the bug report. If

the fixing commit is not identified, the Bug-Introducing Commit cannot be determined and

this causes a false negative1. Studies have demonstrated that 33.8% [Herzig et al., 2013] to

40% [Rodrı́guez-Pérez et al., 2016] of the bugs in the issue tracker are misclassified, i.e., is-

sues categorized as bugs are actually functionality requests or refactoring suggestions. A

false positive2 occurs when a bug report does not describe a real bug, but a fixing commit is

still linked to it. Herzig et al. pointed out that 39% of files marked as defective have never

had a bug [Herzig et al., 2013].

In the second part of the algorithm, lines might be incorrectly identified by SZZ as the

place for where the bug was introduced, causing a false positive. It may also be that the

buggy line was not analyzed by SZZ, producing a false negative. In some cases, the bug

had been introduced before the last change to the line; then, the history of the line has to

be traced back until the true source of the bug is found [Williams and Spacco, 2008]. An

example of this can be found when SZZ flags changes to style (i.e., non-semantic/syntactic

changes such as changes to white spaces, indentation, comments, and some changes that

split or merge lines of code) as Bug-Introducing Commits [da Costa et al., 2016], or when a

project allows commit squashing, since this option removes authorship information resulting

in more false positives. It may also happen that the bug may have been caused by a change

in another part of the system [German et al., 2009]. A final possibility is that the bug fix

modified the surrounding context rather than the problematic lines, thereby misleading the

1The definition of false negative has been addressed in the previous Chapter 3
2The definition of false positive has been addressed in the previous Chapter 3
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Table 4.1: Shortcomings that can lead to false negatives when using SZZ.
Part Type Description

First part

Incomplete mapping [Bird et al., 2009a]. The fixing commit cannot be linked to the bug report.

Inaccurate mapping [Bissyande et al., 2013].
The fixing commit has been linked to a wrong bug report,
they don’t correspond each other.

Systematic bias [Bird et al., 2009a]. Linking fixing commits with no real bug reports.

Second part

Cosmetic changes, comments, etc [Kim et al., 2006c]. Variable renaming, indentation, split lines, etc.
Added lines in fixing commits [da Costa et al., 2016]. The new lines cannot be tracked back.
Long fixing commits [da Costa et al., 2016]. The larger the fix the more false positives.
Semantic level is weak [Williams and Spacco, 2008] Changes with the same behavior are being blamed.

Clean changes [da Costa et al., 2016].
This changes start leading to bugs due to external changes
or artifacts are being blamed.

Commit Squashing [Gousios, 2013].
This practice might hide the real Bug-Introducing Commit,
it combine/merge multiple commits into a single commit.

algorithm [Davies et al., 2014].

4.2.1 Some Examples

To provide more insights on the reasons why SZZ identifies false positive commits, we ex-

plain three possible scenarios based on the example shown in Figure 4.1 in where the algo-

rithm identifies false Bug-Introducing Commits. However, in these scenarios the day of the

bug report has changed from the 2nd of June to the 4th of June. Thus, the bug was not reported

after the second change was committed, and after applying the heuristics, the SZZ is unable

to remove the commit made by Becky from the list of suspicious Bug-Introducing Commits.

The first scenario is represented in the code of Figure 4.1 and is related to the problem

of identifying more than one Bug-Introducing Commit, and how practitioners should behave.

This example shows how after applying the algorithm, it identifies two commits as being the

possible Bug-Introducing commits. While the commit made by Alice is correctly identified

as a Bug-Introducing commit, the change made by Becky is a false positive because of two

main reasons; i) she did not introduce any bug when the lines were committed and, ii) she

modified the code but it maintained the same logic of its previous state where line 25 still

increments one unit on the variable “bar”.

The second scenario is represented in the code of Figure 4.4. In this scenario, the semantic

changes made by Becky are hiding the real Bug-Introduction Commit because she decided to

replace the name of the variable “bar” for “people”. Even though this change may appear
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Figure 4.4: Example where semantic changes in the buggy line hide the bug introducing

change and the SZZ cannot identify it.

to be inoffensive, it modified the variable name in the buggy line 21 hinting the true Bug-

Introducing Commit. Thus, when applying the SZZ algorithm, the outcome is that the last

commit which touched buggy line 21 is the commit made by Becky, when in fact, the bug

was already in the line when Becky decided to change the name of the variable. In this case,

the SZZ identifies a commit but it is not the Bug-Introducing Commit.

Finally, the third scenario is represented in the Figure 4.5. It shows an example where

unchanged lines introduced the bug. In this example, Alice wrote the function foo(), but she

forgot to add the if condition which checks whether the variable “bar” is not equal to 0,

otherwise the logic in line 22 will fail because it is not allow to divide a variable between

0. Thus, in order to fix the bug Chloe added the if condition in the Bug-Fixing Commit.

Therefore when the SZZ algorithm is applied, the outcome blames a wrong change as the

Bug-Introducing Commit because the bug was fixed by adding a new line, and the SZZ algo-

rithm cannot track back the line.

4.2.2 Enhancements of SZZ

After describing the shortcomings of the SZZ found in the literature, the focus is now on how

researchers have addressed them over time and in how far the enhancements have mitigate

the problems.

The misclassification problem has been further investigated by researchers, aiming at mit-

igating the limitations found in the first part of SZZ [Herzig et al., 2013], [Tan et al., 2015].



60 CHAPTER 4. REPRODUCIBILITY AND CREDIBILITY OF THE SZZ

Figure 4.5: Example where unchanged lines introduced the bug, and SZZ cannot identify the

Bug-Introducing Commit.

Tools and algorithms have been created based on the information from version control sys-

tems and issue tracking systems to map bug reports to fixing commits [Wu et al., 2011],

[Nguyen et al., 2012], [Le et al., 2015], [Sun et al., 2017]. As a result of these efforts, the

first part of SZZ has seen how its accuracy has significantly increased.

Related to the second part of SZZ, two main improvements have been proposed in the

literature; they are referred to as SZZ-1 and SZZ-2:

• SZZ-1) Kim et al. suggest an SZZ implementation that excludes cosmetic changes, and

propose the use of an annotation graph instead of using annotate3 [Kim et al., 2006c].

• SZZ-2) Williams and Spacco propose to use a mapping algorithm instead of annotation

graphs; this approach uses weights to map the evolution of a source code line and

ignores comments and formatting changes in the source code with the help of DiffJ,

a Java-specific tool [Williams and Spacco, 2008].

The second part of the algorithm however still has room for further improvements such

as the work from Da Costa et al. who have created a framework to eliminate unlikely Bug-

Introducing Commit from the outcome of SZZ. Their framework is based on a set of require-

ments that consider the dates of the suspicious commit and of the bug report [da Costa et al., 2016].

By removing the commits that do not fulfill these requirements, the number of false positives

provided by SZZ is lowered significantly. . As can be seen, addressing the limitations of the

3Notice that annotate is used in SVN and blame is used in git.
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SZZ often requires a manual, tedious validation process which can be impractical at times.

4.3 Systematic Literature Review on the use of SZZ algo-

rithm

Through this subsection we present the Systematic Literature Review (SLR) on the use of the

SZZ algorithm in 187 academic publications in order to address how the scientific practice

of the ESE research community affects the reproducibility and credibility of the results. In

particular, we want to address studies that use the SZZ algorithm, published in 2005 in “When

do changes induce fixes?” by Śliwerski, Zimmermann and Zeller [Śliwerski et al., 2005b] at

the MSR workshop4. SZZ has been largely used in academia, counting, as of May 2018, with

more than 610 citations in Google Scholar5.

The purpose of a SLR is to identify, evaluate and interpret all available studies relevant to

a particular topic, research question, or effect of interest [Kitchenham and Charters, 2007].

A SLR provides major information about the effects of a particular topic across a wide range

of previous studies and empirical methods. As a result, a SLR should offer evidence with

consistent results and suggest areas for further investigation. To address the SLR, we fol-

lowed the approach proposed by Kitchenham and Charters [Kitchenham and Charters, 2007]

in order to analyze the credibility and reproducibility of the SZZ algorithm. Therefore, we

address the following questions:

1. What is the impact of the SZZ algorithm in academia? The SZZ algorithm has

been shown to be a key factor in locating when a change introduced fixing commits.

However, many papers use only the first part of the algorithm to link bug fix reports

to commits. As the second part of SZZ is shown to encompass significant threats, we

identify only those publications that use both parts, or at least the second part, of the

SZZ algorithm. In addition to this, we offer other metrics on the publications, such as

the number of authors and the geographic diversity of the institutions they work for,

in order to provide insight of how widespread the use of SZZ is. Furthermore, one of

4MSR is today a working conference, but at that time it was a co-located workshop with ICSE in its second

edition.
5https://scholar.google.es/scholar?cites=3875838236578562833
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our goals addresses the maturity and diversity of the publications where SZZ has been

used in order to understand its audience. We address the maturity of a publication by

analyzing whether it has been accepted in a workshop, a conference, a journal, or a top

journal. Diversity is given by the number of distinct venues where publications using

SZZ can be found.

2. Are studies that use SZZ reproducible? Reproducibility is a crucial aspect of a cred-

ible study in ESE [González-Barahona and Robles, 2012]. Piwowar et al. state that

reproducibility improves the impact of research [Piwowar et al., 2007]. In addition,

when a research work incorporates reproducibility, it is more likely to be replicated.

However, there is evidence in the ESE literature that replicable studies are not com-

mon [Robles, 2010]. By providing a replication package (or a detailed description

of the analysis and the environment and data used), the authors facilitate others to

replicate or to reproduce their experiment, which increases the credibility of their re-

sults [Juristo and Vegas, 2009]. In addition, replication packages help in the training of

novice researchers [Madeyski and Kitchenham, 2017]. To provide trustworthy results

in ESE research, authors should offer a replication package and/or a detailed descrip-

tion of the research steps, and the environment and data used. This would allow others

to reproduce or replicate their studies [González-Barahona and Robles, 2012].

3. Do the publications mention the limitations of SZZ? It has already been shown

that limitations of SZZ are well-known in the research literature but there is still the

question of how many papers report any of these. Therefore, this chapter also studies

whether authors mention the limitations of SZZ that may affect their findings, be it in

the description of the method, in the threats to validity or in the discussion.

4. Are the improvements to SZZ (SZZ-1 and SZZ-2) used? The improved versions of

the original SZZ algorithm address some of its limitations. We analyze whether any of

the improvements to the SZZ algorithm can be found in the primary studies included

in the SLR. Thus, we search for any mention of their use, be it in the description of the

method or in the threats to validity. Answering this research question enables further

understanding on how authors who use SZZ behave given the limitations of SZZ.
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4.3.1 Inclusion Criteria

After enumerating the questions, we present the inclusion and exclusion criteria for the SLR.

In addition, we describe the search strategy used for primary studies, the search sources and

the reasons for removing papers from the list. The inclusion criteria address all published

studies written in English that cite either:

1. The publication where SZZ was originally described,“When do changes induce fixes?”

[Śliwerski et al., 2005b], or

2. (at least) one of the two publications with improved versions of the algorithm, “Auto-

matic Identification of Bug-Introducing Changes” [Kim et al., 2006c] and “SZZ Revis-

ited: Verifying When Changes Induce Fixes” [Williams and Spacco, 2008].

There was no need to further investigate the references to the resulting set of publications

(a process known as snowballing): if one of these papers contained as well a reference to the

papers that fit the inclusion criteria, it is assumed to be already in our sample.

Before accepting a paper into the SLR, we excluded publications that are duplicates,

i.e., a matured version (usually a journal publication) of a less matured version (conference,

workshop, PhD thesis. . . ). In those cases, we only considered the matured version. When we

found a short and a long version of the same publication, we have chosen the longer version.

However, in those cases where the publication is a PhD thesis and a related (peer-reviewed)

publication exists in a workshop, conference or journal, the thesis is discarded in favor of the

latter, because conference and journal publications are peer-reviewed whereas a PhD theses

are not. Documents that are a false alarm (i.e., not a real, scientific publication) have also

been excluded.

4.3.2 Search Strategy used for Primary Studies

The studies were identified using Google Scholar and Semantic Scholar as of November 8th

2016. We have searched exclusively in Google Scholar and Semantic Scholar because of i)

their high accuracy in locating citations, providing more results than other databases (from

Table 4.2 it can be seen that they contain three times more citations than other platforms, such

as the ACM Digital Library), and ii) because it was observed that they offer a superset of the
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Table 4.2: Number of citations of the SZZ, SZZ-1 and SZZ-2 publications by research

databases.
Google Scholar Semantic Scholar ACM Digital Library CiteSeerX

# SZZ 493 295 166 26
# SZZ-1 141 100 60 18
# SZZ-2 26 15 8 0

other databases, i.e., it was checked checked that no publication in the other sources is missing

from the list provided by Google Scholar and Semantic Scholar. However, Google Scholar

gives many false alarms, in the sense that they are not publications but slide sets, notes,

etc. Examples of those false alarms are “Strathprints Institutional Repository”6 or “Home

Research”7), which was removed manually from our set. Some academic databases which

are commonly used for SLRs, such as Scopus, could not be employed to gather citations,

because SZZ was published at a time when MSR was a workshop, and thus the original

publication [Śliwerski et al., 2005b] is not included in those databases.

4.3.3 Study Selection Criteria and Procedures for Including and Ex-

cluding Primary Studies

Table 4.3 shows that our searches elicited 1,070 citation entries. After applying the inclusion

criteria described above, a list of 458 papers was obtained. This process was performed by

the first author. The process is objective, as it involves discarding false alarms, duplicates,

and papers not written in English.

Then, the first author analyzed the remaining 458 papers looking for the use of SZZ,

SZZ-1 and SZZ-2 in the studies. This resulted in 193 papers being removed because of three

main reasons: i) they only cited the algorithm as part of the introduction or related work but

never used it, ii) they only cited the algorithm to support a claim during their results or the

discussion, and iii) the papers were essays, systematic literature reviews or surveys. This

process was discussed in advance by all the authors. The second author partially validated

the process by analyzing a random subset comprising 10% of the papers. The agreement

6https://core.ac.uk/download/pdf/9032200.pdf
7http://ieeexplore.ieee.org/document/1382266/\#full-text-section
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Table 4.3: Number of papers that have cited the SZZ, SZZ-1 and SZZ-2 publications by

joining the research databases Google Scholar and Semantic Scholar during each stage of the

selection process.
Selection Process #SZZ #SZZ-1 #SZZ-2

Papers extracted from the databases 788 241 41
Sift based on false alarms 29 removed 10 removed 2 removed
Sift based on not available/English writing 40 removed 4 removed 0 removed
Sift based on duplicates 308 removed 187 removed 32 removed
Full papers considered for review 411 40 7
Removed after reading 149 removed 32 removed 4 removed
Papers accepted to the review 262 8 3

between both authors was measured using Cohen’s Kappa coefficient, resulting in a value of

1 (perfect agreement). These papers were removed on the basis that they do not answer our

research questions. After this process 273 papers were included in this SLR.

4.3.4 Quality Assessment Criteria

The approach employed to study the quality assessment is based on Kitchenham and Char-

ter’s [Kitchenham and Charters, 2007] concept of quality. Thus, the assessment is focused on

identifying only papers that report factors related to the credibility and reproducibility of the

studies using SZZ. The specific criteria are described in the next phase.

Phase 1: Establishing that the study uses the complete SZZ algorithm

In this SLR we only consider studies that use the complete algorithm, or at least its sec-

ond part. Even though shortcomings have been reported in both parts of the SZZ algorithm

(see Section 4.1), most of the shortcomings present in the first part have been successfully

addressed in the last years.

To analyze the ease of reproducibility of each study, we looked for (1) a replication pack-

age provided by the authors or (2) a detailed description. A detailed description must have: (a)

precise dates when the data were retrieved from the projects under analysis, (b) the versions

of the software and systems used in the analysis, (c) a detailed description of the methods

used in each phase of the study, and (d) enumerate the research tools used. It should be
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noted whether the that we did not inspect whether the replication package is still available, or

whether elements in the package make the study reproducible.

It is also important to point out that during this SLR an assumption was made on the avail-

ability of the replication package and that it was available at the time when the articles were

submitted. And we do not claim the availability of these packages in the long term, because

it is possible that some factors such as a change in the author’s affiliation, an inaccessible

URL or other reasons might cause the package to not be available anymore. For instance,

the reproduction package from the original SZZ paper [Śliwerski et al., 2005b] is no longer

available.

Applying our criteria to the set of 273 papers, we obtain 187 papers that fulfill this crite-

rion.

4.3.5 Extracting Data from Papers

We have read and analyzed the 187 papers, and extracted the following data information to

answer the questions:

1. Title,

2. Authors,

3. Countries of the authors’ institutions,

4. Purpose of the study,

5. Outcome of the study, and

6. Venue and class of publication (journal, conference, workshop or university thesis).

Then, in a second phase, we have carefully analyzed each publication looking:

1. For a replication package (as in [Robles, 2010]).

2. For a detailed description of the methods and data used (as in [Robles, 2010]).

3. Whether shortcomings are mentioned.

4. Whether a manual inspection to verify the results has been done, to answer.
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5. Whether authors use an improved version of SZZ (differentiating between a version

found in the research literature and ad-hoc improvements implemented by the authors).

4.3.6 Overview across Studies

Cruzes and Dybå reported that synthesizing findings across studies is specially difficult, and

that some SLRs in software engineering do not offer this synthesis [Cruzes and Dybå, 2011].

For this SLR we have extracted and analyzed both quantitative and qualitative data from the

studies, but we have not synthesized the studies, as they are too diverse. Doing a meta-

analysis would offer limited and unstructured insight [Clarke and Oxman, 2000] and results

would suffer from some of the limitations in SLRs published in other disciplines

[Rosenthal and DiMatteo, 2001]. Thus, we combined both our quantitative and qualitative

data to generate an overview of how authors have addressed the reproducibility and credibility

of the studies. The results are presented in Subsection 4.3.7. In addition, we have constructed

a quality measure8 that assesses the ease of reproducibility of a study. This measure is based

on the score of five characteristics of the papers that was looked for in the second reviewing

phase. If the questions were answered positively, the paper was marked with a positive score,

otherwise with a 0:

1. Does the study report limitations of using SZZ? (score = 1 point)

2. Do the authors carry out a manual inspection of their results? (score = 1 point)

3. Does the study point to a reproducibility package? (score = 2 point)

4. Does the study provide detailed description of the methods and data used? (score = 1

point)

5. Does the study use an improved version of SZZ? (score = 2 point)

We believe that elements with a higher impact on ease reproducibility of the studies

should be scored with 2 points. Partial scores are summed up to obtain an overall score.

Table 4.4 offers a mapping of this overall measure with the ease of reproducibility of a study.

8The main goal of this quality measure is to determine the reproducibility and credibility of the studies in

the moment in which the study was submitted.
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Table 4.4: Mapping of overall score and the quality measure on ease of reproducibility of a

study.
Score Quality Measure

0 – 1 Poor to be reproducible and to have credible results
2 – 4 Fair to be reproducible and to have credible results
5 – 6 Good to be reproducible and to have credible results

7 Excellent to be reproducible and to have credible results

Table 4.5: Quantitative results from the 187 studies.
Purpose: Outcome: Common Metrics: Versioning:

Bug Prediction (BP) (32%)
Bug Proneness (BProne) (27%)

Bug Detection (BD) (22%)
Bug Localization(BL) (19%)

New Method/Approach (NM) (41%)
Empirical Study (ES) (37%)

New Tool (NT) (8%)
Human Factors (HF) (8%)

Replication (R) (3%)
Create a Dataset (D) (2%)

Commits (26%)
Bug Reports (16%)

LOC (15%)
Changes (12%)

Files (8%)
Faults (8%)

Revisions (6%)
Modules (4%)

CVS (50%)
Git (28%)

SVN (25%)
Mercurial (6%)

Table 4.6: Results of the calculating the quality measure of reproducibility and credibility.
Quality Measure #papers

Poor to be reproducible and to have credible results 34 (18%)
Fair to be reproducible and to have credible results 126 (67%)
Good to be reproducible and to have credible results 24 (13%)
Excellent to be reproducible and to have credible results 3 (2%)

4.3.7 Results of Questions

Data analysis

Here, we present our quantitative and qualitative data analysis extracted from the 187 studies

analyzed during the SLR. Table 4.5 summarizes the frequency of the different outcomes,

purposes, versioning systems and metrics in the studies. The most common purpose is bug

prediction followed by bug proneness. The most common outcomes are the development of

a new method/approach and the evidence of empirical results.

The qualitative data, summarized in Table 4.6, consists in the number of papers that be-

long to each quality measure levels. It can be observed that 67% of the papers present a fair

reproducibility measure, and only 2% of them provide excellent means to be reproducible.
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The combination of quantitative and qualitative data is addressed in Table 4.7, where the

purpose and outcome of each individual study is grouped according to our quality measure.

It can be observed that the distribution by purpose or outcome does not differ much from

the global distribution, although studies offering new tools (NT) and replications (R) offer

slightly better results than the rest.

Table 4.7: Distribution of the ease of reproducibility quality measure of studies depending on

purpose and outcome. Acronyms are defined in Table 4.5.
Quality Purpose Outcome

BP BProne BD BL ES HF NM NT R D

Poor 15 (25%) 10 (19%) 6 (15%) 3 (9%) 14 (20%) 2 (13%) 17 (22%) 1 (7%) 0 (0%) 0 (0%)

Fair 38 (64%) 32 (62%) 29 (72%) 27 (77%) 49 (70%) 13 (81%) 50 (65%) 8 (53%) 3 (60%) 3 (75%)

Good 6 (10%) 9 (17%) 5 (13%) 4 (11%) 5 (7%) 1 (10%) 10 (13%) 5 (33%) 2 (40%) 1 (25%)

Excellent 1 (1%) 1 (2%) 0 (0%) 1 (3%) 2 (3%) 0 (0%) 0 (0%) 1 (7%) 0 (0%) 0 (0%)

The type of paper (journal, conference, workshop and university thesis) as well as the size

(short, medium, long) of the paper might be a restriction to provide means of reproducibility.

We have labeled paper size to be less than 8 pages for short, from 9 to 509 pages for medium,

and more than 50 pages for long publications. Table 4.8 reports the type and the size of each

individual study grouped according to our quality measure of reproducibility and credibility.

Again, the results do not differ much from the global distribution. However, it can be seen that

(a) workshop papers perform worse than the rest, and (b) reproducibility increases slightly

with the size of the publication.

What is the impact of the SZZ algorithm in academia?

Figure 4.6 shows the evolution of the number of publications that have cited and used SZZ,

SZZ-1 or SZZ-2 up to November 2016. The SZZ algorithm was published in 2005 and

afterwards 178 studies have cited it. SZZ-1 was published in 2006 and its number of citations

is 53. Finally, SZZ-2 was published in 2008 and counts with 16 publications10.

9We argue that master and PhD theses should be categorized as long publications. We have chosen 50 as

limit between medium and long papers because in our data we have observed that all master theses have more

than 50 pages whereas none of the journals articles have more than 50 pages.
10Note that a paper can cite more than one version of SZZ.
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Table 4.8: Results to measure the ease of reproducibility and credibility of the studies de-

pending on the type of paper and their size.
Quality Venue Size

Journal Conference Workshop University Short Medium Long

Poor 5 (12%) 20 (20%) 5 (38%) 4 (13%) 10 (26%) 21 (17%) 3 (13%)

Fair 32 (76%) 65 (63%) 7 (54%) 22 (74%) 25 (64%) 85 (68%) 16 (70%)

Good 4 (10%) 15 (15%) 1 (8%) 4 (13%) 4 (10%) 16 (13%) 4 (17%)

Excellent 1 (2%) 2 (2%) 0 (0%) 0 (0%) 0 (0%) 3 (2%) 0 (0%)

Table 4.9: Most frequent types of publications using (the complete) SZZ (N=187). # different

counts the different venues, # publications counts the total number of publications in that type

of venues.
Type # different # publications

Journals 21 42
Conferences & Symposiums 40 102
Workshops 13 13
University theses 20 30

The number of studies per year peaked in 2013, with 30 papers using an SZZ version. In

general since 2012, the number of studies using this algorithm seems to have stabilized with

over 15 citations/year for the use of the complete algorithm.

Table 4.9 shows the different types of venues with publications where SZZ has been used.

We have classified the venues in four different categories: university theses, workshop papers,

conference and symposium publications, and journal articles. Master theses, student research

competitions and technical reports have been grouped under university theses. Diversity and

maturity can be found in the sample, as it can be seen from the number of different venues

(second column in Table 4.9) and the considerable number of journal publications (third

column in Table 4.9).

Table 4.10 offers further insight into venues that have published more studies that use

SZZ. The most frequent is the conference where SZZ itself was presented, the Working Con-

ference on Mining Software Repositories (MSR). Two top conferences, such as the Interna-

tional Conference on Software Maintenance and Evolution (ICSME) and the International

Conference of Software Engineering (ICSE), are second and third. SZZ can also been fre-
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Figure 4.6: Sum of the number of publications using the (complete) SZZ, SZZ-1 or SZZ-2

by year of publication (N=187).

quently found in high quality journals, such as Empirical Software Engineering (EmSE) and

Transactions on Software Engineering (TSE). The quality rating of conferences given in Ta-

ble 4.10 has been obtained from the GII-GRIN-SCIE (GGS) Conference Rating11; Class 1

(CORE A*) conferences are considered excellent, top notch events (top 2% of all events),

while Class 2 (CORE A) are very good events (given by the next top 5%). For journals, we

offer the quartile as given by the well-known Journal Citation Reports (JCR) by Clarivate

Analytics (previously Thomson Reuters).

The impact of the SZZ algorithm is significant: 458 publications cite SZZ, SZZ-1 or

SZZ-2; 187 of these use the complete algorithm. The popularity and use of SZZ has risen

quickly from its publication in 2005 and it can be found in all types of venues (high diversity),

ranging from top journals to workshops and PhD theses; SZZ related publications have often

been published in high quality conferences and top journals (high maturity).

11http://gii-grin-scie-rating.scie.es/
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Table 4.10: Most popular media with publications using SZZ, SZZ-1 and SZZ-2 (N=187).

“J” stands for journal and “C” for conference/symposium.
Type Name Rating # papers)

C Conf Mining Softw Repositories (MSR) Class 2 - CORE A 15 (8%)
C Intl Conf Software Eng (ICSE) Class 1 - CORE A* 12 (6%)
C Intl Conf Soft Maintenance (ICSME) Class 2 - CORE A 10 (5%)
J Empirical Software Eng (EmSE) JCR Q1 9 (5%)
J Transactions on Software Eng (TSE) JCR Q1 9 (5%)
C Intl Symp Emp Soft Eng & Measurement

(ESEM)

Class 2 - CORE A 8 (4%)

C Intl Conf Automated Softw Eng (ASE) Class 2 - CORE A 7 (4%)
C Symp Foundations of Software Eng (FSE) Class 1 - CORE A* 6 (3%)

Table 4.11: Publications by their reproducibility: Rows: Yes means the number of papers that

fulfill each column, whereas the complement is No. Columns: Package is when they offer

a replication package, Environment when they provide a detailed methodology and dataset.

Note that Both is the intersection of Package and Environment. (N=187)
Package Only Environment Only Both None

Yes 19 72 24 72
No 168 96 163 115

Are studies that use SZZ reproducible?:

Table 4.11 shows the number of analyzed studies that a) offer a replication package or b)

have carefully detailed the methodology and the data used to allow the reproducibility of

their studies. We have classified the publications in four groups: i) publications that offer

a replication package (Package), ii) publications that detail the methodology and data used

(Environment), iii) publications that have both (Both), and iv) none (None).

From the 187 analyzed publications, 43 offer a replication package, and 96 carefully

detail the steps followed and the data used. Furthermore, only 24 provide both the replication

package and the detailed methodology and data. 72 of the papers do not offer a replication

package or a detailed description of the methodology and data.

Only 13% of the publications using any of the variants of SZZ provide a replication pack-

age and carefully describe each step to make reproduction feasible. 39% of the papers do not
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Table 4.12: Number of publications that mention limitations of SZZ in their Threats To Valid-

ity (TTV). Mentions can be to the first (TTV-1st), second (TTV-2nd) or both parts (Complete-

TTV). The absence of mentions is classified as No-TTV. Note that Complete-TTV is the

intersection of TTV-1 and TTV-2.
No-TTV TTV-1st only TTV-2nd only Complete-TTV

Yes 94 44 10 39
No 93 143 177 148

provide replication package or a detailed description of each step, making their reproduction

very unlikely.

Do the publications mention the limitations of SZZ?:

We have classified publications into four groups, depending on how they address limitations

in SZZ as a threat to validity (TTV). Thus, we have publications that i) mention limitations of

the complete algorithm (Complete-TTV), ii) mention only limitations in the first part (TTV-

1st), ii) mention only limitations in the second part (TTV-2nd), and iv) do not mention limita-

tions at all (No-TTV).

Table 4.12 offers the results of the analysis. From the 187 publications, only 39 mention

limitations of the complete SZZ as a threat to validity, whereas 83 refer to limitations in the

first part, and 49 only mention it for the second part. The rest, 94 studies, do not mention any

limitation.

In a more profound review, we found 82 publications where a manual inspection had been

done to assess these limitations: 33 of them referred to issues related to the first part of the

SZZ algorithm, while 30 analyzed aspects from the second part (i.e., the Bug-Introducing

Commit). In the remaining 19 papers, the manual validation of results did not focus on

outputs of the SZZ algorithm.

Almost half (49.7%) of the analyzed publications mention limitations in the first or second

part of SZZ as a threat to validity. Limitations to the first part are reported more often than to

the second part.
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Table 4.13: Number of papers that have used the original SZZ, the improved versions of SZZ

or some adaptations to mitigate the threat.
Original SZZ only SZZ-improved only SZZ-mod only Mixed

# publications 71 (38%) 26 (14%) a 75 (40%) 15 (8%)

a22 (12%) of the papers use SZZ-1 and only 4 (2%) of the papers use SZZ-2.

Do the publications mention the limitations of SZZ?:

It is difficult to determine which improvement has been used when the authors do not mention

it in the publication. Thus, if the authors do not explicitly specify of having used an improve-

ment, we assume that they use the original version of SZZ. The publications are classified

into one of the following groups, depending on the kind of improvement they used:

• original SZZ: Those only citing the original version and not mentioning improvements.

• SZZ-1: Those citing the improved version of Kim et al. [Kim et al., 2006c].

• SZZ-2: Those citing the improved version of Williams and Spacco [Williams and Spacco, 2008].

• SZZ-mod: Those citing the original SZZ with some (own) modification (by the au-

thors). Publications in this group contain statements like “we adapt SZZ”, “the ap-

proach is similar to SZZ’ or “the approach is based on SZZ”, but do not refer explicitly

to SZZ-1 or SZZ-2.

Table 4.13 shows how many publications have used improvements to SZZ to mitigate the

limitations of the original SZZ. The largest groups correspond to publications where authors

use their own enhancements/adaptations (40%) and the original SZZ algorithm (38%). This

suggests that researchers prefer to address the limitations of SZZ themselves instead of using

enhancements proposed by others. Notice that the “Mixed” column in Table 4.13 refers to

papers that have used either the original version, the improved versions or some adaptations

of SZZ in the same study (e.g., to compare their performance in the same case study).



Chapter 5

The Theory of Bug Introduction

The proper understanding of the bug introduction process is an essential part of any research

work related to the identification of the origin of a bug. The study of the changes in a Bug-

Fixing Commit (BFC) to locate the origin of a bug is the foundation for researchers to carry

out studies in other disciplines of Software Engineering. For example, researchers need to

identify where previous bugs were introduced and obtain their characteristics in order to

build models that can predict future bugs. They should define and understand how a bug was

introduced into the project and what were its causes before building any classification model.

To detect bugs, researchers can develop algorithms based on the learning from previous bugs

patterns.

To identify the Bug-Introducing Commit (BIC) in Empirical Software Engineering, re-

searchers rely on a common practice that analyzes static metadata retrieved from previous

changes to the modified lines of a BFC (i.e, developer information, number of lines of code

introduced, type of changes, etc.). Although these metadata can help to understand were

the bug was introduced, it is necessary to keep in mind that the software evolves. Lehman

formulated some laws that state how a E-type software system evolves [Lehman, 1979],

[Lehman et al., 1998]. Some of the Lehman’s laws to take into account are:

• First law - continuing change: “a system must be continually adapted or it becomes

progressively less satisfactory”.

• Second law - increasing complexity: “as a system evolves, its complexity increases

unless work is done to maintain or reduce it”.

75
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• Sixth law - continuing growth: “ the functional content of an system must be contin-

ually increased to maintain user satisfaction over its lifetime”.

These laws explain that E-type1 software systems are continuing being adapted, with

more complexity and functionality over the time. These factors help to understand why it

is possible that a piece of code that did not insert any error may manifest the bug later, due

to the evolution of the software. For example, there could be instances where other external

software changes to the project are affecting its source code and it caused the malfunction.

When researchers are looking for the origin of the bug it is important that they have this

factors into account, in the sense that it may be possible that a line did not inserted the error

in the at the moment of their written, but the evolution of the system caused that this line

manifested itself the bug. Thus understanding the introduction of bugs from a static point

of view may lead to problems when locating the line(s) that inserted the bug. It is therefore

logical to think that a more in-depth knowledge of when and how a bug is introduced will

make the state-of-the-art techniques vary in accuracy accurate

There are two primary moments that should be understood and distinguished when ana-

lyzing the origin of a bug, the bug manifestation moment and the bug introduction moment.

The second moment refers to when a failure is directly caused by the introduction of a change

which is visible in the version control system. The bug manifestation moment refers to when

a failure manifests itself for the first time, and it is not directly caused by the introduction

of a change visible in the version control system, but rather, the failure is due to changes in

the context or the environment. It is important to distinguish both moments because not in

all cases the bug introduction moment coincides with the bug manifestation. For example,

imagine that Alice inserted a line to the project that opens the html code of a website, and

one week later Bob reported that the website was different from what users expected and he

fixed the bug by modifying that line. Thus, there are two possible scenarios:

1. The bug introduction occurs whether the URL that Alice wrote is incorrect. Thus Alice

introduced the error at this moment and it manifested itself in the project, although it

was not notified until one week later.
1An E-program is written to perform some real-world activity; how it should behave is strongly linked to the

environment in which it runs, and such a program needs to adapt to varying requirements and circumstances in

that environment
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2. The bug introduction does not exist whether the URL that Alice wrote is correct. Thus

other reasons such as the website has been removed or suspended by the server ad-

ministrator caused the bug. In this scenario there is no bug introduction moment when

Alice wrote the line, but there is a first failing moment in which the bug manifested

itself in the project.

However, currently there is no clear distinction between them in the software research

literature on bugs. In fact, there is not a clear definition of what to introduce a bug means as

it depends on the definition of a bug, which is no clearly defined either [Kim et al., 2006c].

The limited knowledge of when a error is introduced into the source code makes it difficult

to distinguish between these moments, and as a consequence, researchers cannot be sure

whether the line(s) identified after applying some approaches/techniques introduced the bug

at the same moment of inserting the lines, or if the line manifested the bug because of other

reasons. Furthermore, the lack of a meaningful model to validate these algorithms as well as

the lack of definition of what needs to validated prevents researchers from calculating what a

false positive or true positive is as they unsure if the line was buggy or clean at the moment

of their insertion.

With the intention of better understanding the complex phenomenon of bug introduction

and bug fixing, this chapter carefully introduced the proposed theory of bug introduction

which explains the necessity of distinguishing how bugs are introduced and how they are

manifested in software products using the concept of a test. The moment of bug introduction

can be identified by using a hypothetical test that checks whether the code in the moment of

its writing presents the symptoms described in the bug report. When the test fails, it means

that the lines were buggy at this time, and we can be sure that the bug was introduced in this

moment. When the test passes, it means that the lines were clean at this time and that there

was not a bug introduction moment. Furthermore, we include the definitions and a taxonomy

which help to analyze formally the process. The taxonomy helps to understand the many

different ways in which a bug is introduced, and why some of the methods proposed in the

literature might fail to find many of them. Finally, we define a model for what are BICs,

and how they are related to BFCs in order to show how state-of-the-art algorithms can be

evaluated in a comprehensive way, something that is missing in the current literature.
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5.1 Towards a Theoretical Model

This section introduces the definition of a model to identify the changes that introduce errors.

This model identifies a set of BICs that corresponds to a set of BFCs. It includes precise

definitions of BFC and BIC based on the assumption that there is a hypothetical test with the

perfect test coverage that could be run indefinitely across the history of the source code. This

model returns as true or false depending on whether or not the bug was present at a given

specific moment.

The main aim of describing this model is to extend the current state-of-the-art approaches

in order to ensure that the commits identified as BICs introduced the bug into the source

code at some point in the project history. Also, this model can be used as a framework to

evaluate in a comprehensive way the performance of other approaches as well as to compare

the effectiveness between different algorithms since it defines the “gold standard” of which

commits in a project are BICs. Before explaining in detail the theory of the model, we should

describe some important concepts used in the model that help to better understand it.

5.1.1 Definitions

Currently, there are no formal descriptions of Version Control Systems based software de-

velopment process, even though some authors have attempted this before [Rosso et al., 2016,

Brun et al., 2013]. These articles do not cover all the elements or set of elements that are

required to describe a VCS-based software development process. The projects analyzed in

this thesis use git as their VCS which records observable changes to a file or set of files. Ob-

servable changes are alterations of the file(s) caused by additions, deletions or modifications.

This thesis is only focused on observable changes in the lines of source code of the project;

thus, changes are preceded by other changes making up a linear vision of precedence. This

precedence is not set by dates, but by previous versions (changes) in the VCS.

Looking for the origin of bug is a complex task. In this way, we found the necessity of

formulating a terminology which is one of the valuables parts in this paper, this terminology

can be applied to the version control systems. The terminology defines every element and

every set of elements that take place during the analysis from the fixed code to the identifica-

tion of the BIC or the FFM. To avoid confusion, next we define the concepts we are going to
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work with:

Atomic Change (at): An operation that applies a set of changes (modification, deletion, ad-

dition) as a single operation. In this thesis, atomic change is assumed to be one line minimum

change.

Previous Atomic Change (at′): Given an atomic change at, we refer to at′ as the last

modification which changed the line l of a file f . Thus, the precedence relation between an

atomic change and its previous atomic change is as follow:

at′ → at

Commit (c): An observable change that records one or more atomic changes to the source

code of a software system. These changes are generally summarized in a patch which is a set

of lines that a developer adds, modifies or deletes in the source code. Commits update the

current version of the tree directory.

Lines Changed (LC): By definition, a commit may change zero2 or more lines of code;

we call these lines changed of a commit and denote them as LC(c).

Precedence between commits: Relation between the atomic changes of a commit with

their previous atomic changes in the file f . Given a commit c and a line l, a commit c′ is

called the previous commit of c if it last touched the line and l of c. We will refer to this

precedence between commits as the previous commit (pc) of a commit in f and denote it as:

pc′(c)→ pc(c)

Previous Commit Set (PCS): Set that includes the different previous commits of a com-

mit, we refer to it as PCS(c). Formally:

PCS(c) =
⋃

pc′(c)

2When only new lines are added in a commit, zero lines are changed.
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Descendant Commit (dc): Given a commit c and a file f and the lines changed LC, a

descendant commit of c is any of the commits that belongs to the precedence commit chain

of the LC(c) in f , we will refer it as dc.

Descendant Commit Set (DCS): Set of descendant commits for a given commit; we refer

to it as DCS(c). Note that the previous commit set contains only the previous commit to a

commit, whereas the descendant commit set contains all the commits that have modified, in

somehow, the lines changed in c during all the history of f .

Ancestor Commit (ac): Given a commit c a commit ac is called the ancestor commit of c

if its precedence is previous to c.

Ancestor Commit Set (ACS): Set of the ancestor commits of a given commit; we refer

to it as ACS(c). Note that from a specific commit of the repository, the ancestor commit set

contains all the commits of that repository.

Immediately Ancestor Commit (iac): Is the commit immediately before to a given com-

mit in the ancestor commit set, we will refer it as iac.

Snapshot: It represents the entire state of the project at some point in the history. Using git

as example, given a commit c, the corresponding snapshot would be the state of the repository

after typing “git checkout c”. The evolution of the software can be understood as a sequence

of snapshots, each corresponding to a commit, in the order shown by “git log” (order of

commits in the considered branch).

Bug: It refers to a software component malfunctioning. In the literature, these causes are

also referred to as “defects”, or “errors”.

Bug-Fixing Commit (BFC): Commit where a bug is fixed. As a fixed bug b might require

one or more commits to be fixed, we define the set of Fixing Commits (BFC) of a bug b as

following set: BFC(b). In general, we expect this set to be a singleton, i.e., a bug is fixed in a

single commit, although several commits may be needed to fix a bug. Furthermore, a commit
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fixing some bug only exists whether it is really a bug at the moment of fixing, because to find

out which commit introduced the bug, and it is necessary that it really being a bug.

Bug-Fixing Snapshot (BFS): snapshot of the code corresponding to the BFC.

Test Signaling a Bug (TSB): A test used to signal that a bug is present. It is defined as an

hypothetical test, that could be run on any snapshot of the code, returning True whether the

test is passed, meaning that the snapshot does not contain the bug. And False whether the test

is not passed, meaning that the snapshot contains the bug. The test is known to pass in the

Test failing snapshot (T-S): snapshot for which TSB fails.

Test passing snapshot (T+S): snapshot for which TSB passes.

Bug-introducing snapshot (BIS): First snapshot in the longest continuous sequence of T-

S, which finishes right before the BFS. That is, there is a continuous sequence of snapshots

for which the test fails, starting in the BIS, and finishing right before the BFS. Since the test

is failing all the way from this snapshot up to the fix, we can know that the test was failing all

the way in that sequence, and since this is the first snapshot with the test failing, we can say

that this is the first snapshot “with the bug present”.

Bug-introducing commit (BIC): A specific commit corresponding to the BIS that intro-

duced the buggy line(s) at the moment of their insertion, and the bug propagated through

each following commit until the BFC fixed the line(s).

First Failing Moment (FFM): The first commit corresponding to the BIS that manifest the

bug but it did not introduce buggy line(s) at the moment of their insertion.

Discovery Moment (DM: The moment when a developer or user finds a bug and reports it

in the issue tracking system.
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Committer: The person who has the rights to commit to the source code of a particular

piece of open source software. The committer might not be the original author of the source

code. The author is someone who writes the original code, whereas the committer commits

the code on behalf of the original author. This is important in Git3 it allows the possibility of

rewriting history or apply patches on behalf of another person.

It is to be noted that some of these terms have been used for different concepts in the

literature; and from it, it can be understood why we argue that a common terminology when

investigating bug fixing activity is needed. Table 5.1 offers a comparison of the terminology

proposed in this paper and how these concepts have been referred in previous works through

a diverse terminology. To our knowledge, no previous studies has presented a comprehen-

sive list of all concepts needed to have a clear and complete vision of the bug introduction

problem.

5.1.2 Explanation of the Model

All too often when analyzing projects, researchers use git as their Version Control System

(VCS). The VCS records observable changes to a file or set of files. Observable changes are

alterations of the file(s) caused by additions, deletions or modifications of one or more lines

in the source code. Thanks to the VCS, researchers are able to manually or automatically

track back deletion and modification of lines from a specific moment up until its origin, they

are also able to identify which lines are new additions in each commit. Navigating back into

the relationship between the altered lines of each observable change and its previous one, a

“precedence observable change tree” or “genealogy tree” can be built. Figure 5.1 shows an

example of the commit i made in a file f that fixed the bug b. Backtracking each modified or

removed line from f , we can draw the genealogy tree of the changed lines in i. It is important

to notice that the new addition in i cannot be tracked, but they still remain in the model. The

black boxes represent the different commits, the dots represent hunks of only new lines, the

arrows show the precedence between commits, and the color of the lines depend on whether

they are removed (red), added (green) or modified (black).

Using the defined terminology, we will refer to the commit i as the BFC. From the lines

changed in the BFC, LC(BFC), we might draw its genealogy tree in which, thanks to the

3To further information see https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
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Table 5.1: Comparison of our proposed terminology with previous terms found in the bug

introducing literature.

Terminology Found as ... References

Commit

Change [da Costa et al., 2016][Kim et al., 2006c]

Commit [Izquierdo et al., 2011]

Revision [Kim et al., 2008]

Transaction [Śliwerski et al., 2005b][Bettenburg and Hassan, 2013]

Prev. Commit

Earlier change [Śliwerski et al., 2005b]

Change prior [Williams and Spacco, 2008]

Ancestor commit [Blondeau et al., 2017]

Prev. commit [Izquierdo et al., 2011]

Recent version [Kim et al., 2008]

Preceding version [Hata et al., 2010]

Ancestor Commit
Revision [Śliwerski et al., 2005b][da Costa et al., 2016],

[Kim et al., 2006c]

Changes [Kim et al., 2008]

Ancestor [Bird et al., 2009b]

BFC

Fix for a bug [Śliwerski et al., 2005b]

Bug-fixing change [Izquierdo et al., 2011][Williams and Spacco, 2008],

[Kim et al., 2008][da Costa et al., 2016][Kim et al., 2006c]

Fixed revision [Hata et al., 2010]

BIC
Fix-inducing change [Śliwerski et al., 2005b][Williams and Spacco, 2008]

Bug-introducing change [da Costa et al., 2016][Kim et al., 2006c][Kim et al., 2008]
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precedence between commits, there is a genealogical relationship. Visually from this re-

lationship, we distinguish between commits of the first generation (i-1a,i-1b,i-1c), second

generation (i-2a, i-2b, i-2c, i-2d), and third generation (i-3a) of the BFC. By extension, the

Previous Commit Set of the BFC, are the first generation commits and the Descendant Com-

mit Set are the first, second and third generation of commits.

PCS(BFC) = (i− 1a, i− 1b, i− 1c)

DCS(BFC) = (i− 1a, i− 1b, i− 1c), (i− 2a, i− 2b, i− 2c, i− 2d), (i− 3a)

Figure 5.1: Genealogy tree of the commit i, each commit shows a precedence relationship

with its descendant commits.

When focusing on commits in a branch of a project repository we do not have a clear

visual access to the genealogy tree of a given commit, but we have a flatten version of all

the ancestor commits. In this flattened version, the commits are preceded by other changes

making up a linear vision of precedence, where the commits of the genealogy can be found.

An important concept is that this precedence is not set by dates, but by previous versions

in the VCS. This occurs due to the way in which a decentralized VCS system works. Bird
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et al. explained how the local repositories of two collaborating developers working with

git might diverge, which causes that each repository to contain new commits that are not

present in the other. Thus, in the moment of combining both local repositories, the user can

select between many options regarding the sequence of commits such as to rebase, merge,

remove, squash, etc. These actions may alter the natural order of commits, which inhibits

them from being sorted in time [Bird et al., 2009b]. Continuing with the above example,

Figure 5.2 demonstrates the linear vision of precedence of the change i in the master branch

of a project repository. The commits are represented by circles, and the changes belonging

to the genealogy tree of i can be found in orange, based on whether they are a pc in blue,

or whether they are a dc; the remaining commits are the ac where the commit before a is is

the immediately ancestor commit iac. The ACS(i) were committed to the project; however,

they do not have a precedence relationship with the lines modified in i.

For those who are familiarized with git, we can compare the Figure 5.1 with the git

blame of the modified lines in a BFC and Figure 5.2 with the git log of a given commit

in the master branch of a project repository.

Figure 5.2: Linear vision precedence in the master branch of the bug-fixing change i. The

colored commits belongs to the PCS(i) (orange) and DCS(i) (blue), the black commit is

the BFC and the gray commit is the initial commit of the project. Notice that the commits are

not sort in time because we are not assuming a precedence set by dates.

From an objective point of view, it is not important WHEN the bug was introduced in

time but, WHAT commit introduced it. This is because after inserting the erroneous lines in

an ancestor commit of a BFC, the bug is in the system and furthermore, it may propagate

through each new change in the file. Hence, determining the FFM that manifests the bug

implies to navigate back into the ACS. Thus, from a theoretical point of view, there will

be one commit in the linear vision precedence that manifest the malfunction the first time.
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This commit will be the FFM. Furthermore, the FFM may be the BIC based on whether it

introduced a change visible in the VCS of the project that caused the bug. When there is no

change that introduced the error the BIC cannot be found in the ACS(BFC). As a result, the

FFM is used to explain that in this precise commit, other (external/internal) changes that do

not belong to the ACS(BFC), affected in somehow the project and caused the failure of the

system.

5.2 How to Find the Bug-Introducing Commit and the First-

Failing Moment:

In order to discover the BIC with the maximum accuracy, it is recommended to do it manually

by backtracking each line of the source code of all changes of a BFC until find the moment

where the bug was introduced the first time. To ensure that in this moment the bug was

introduced, it may be necessary to use information from the code review system and version

control system. If according to this information, the commit introduced the error, the change

is regarded as BIC. On the contrary, if the information gathered from these systems explains

that there was a change in the environment or context that caused the failure, it is not a BIC,

and in this case the change is the FFM.

Theoretically and under optimal conditions, this process can be fully automatic relying on

the Test Signaling a Bug (TSB) which flags as True when the test is passed and False when the

test fails in the analyzed snapshots of the project. Despite the high complexity of automating,

there is an easy way to find the BIC or FFM in this model, which can be achieved through

looking manually for the first snapshot in the linear vision precedence when the TSB fails.

This model focuses on the cases when a BIC for a BFC can be found or the cases when

it is sure that a BIC for a BFC does not exist. To simplify, we assume that there is only the

master branch in the repository of a project. To show how the model works, the definitions

of BIC and BFC based on the existence of a TSB are applied. The TSB is applied in all

the snapshots of the linear vision precedence of a BFC to identify whether there is a BIC.

Considering that the TSB has a coverage of 100% and that it can run indefinitely across the

history of the source code, the proposed model is able to find out the BIC or the FFM of a

bug report by analyzing the changes that fixed the bug. This TSB will be passed into all the
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ancestor commit set of the —BFC. Thus, when the TSB test is passed to all the snapshots,

it looks for the snapshot that fails; if found, the model will consider it as a candidate for the

BIC and FFM.

This technique differs from previous techniques used in software testing to locate faults as

it looks for the origin of the bug by understanding the different origins of bugs. The software

testing techniques do not look at the origins of the bugs by understanding their reasons and

their dependencies that may cause the problem that a clean line can become to be buggy in the

future, but they usually are focused on minimize the cost that a fault may cause in the system

by guiding developers to the faulty location. Our proposed technique attempts to rebuild the

complete history of the system in each snapshot in order to know what dependencies are

being used and whether the bug was inserted at at that moment. Thus, to our knowledge, this

is the first time that this idea is presented, where the software testing can be used to find the

BIC and the FFM using the TSB.

5.2.1 Outcome of the Test Signaling a Bug

As mention earlier, the TSB checks for the functionalities and features of a project with a test

coverage of the 100%. Currently, a common practice in the bug fixing process is to add a test

case checking the behavior of the fixed bug when submitting the BFC. Thus, the proposed

model may use this information from the test case to build the TSB.

The outcome of the TSB varies depending on each snapshot, there are three different

outcomes:

1. Pass: The function or feature tested is present in the snapshot and it works as the test

anticipated according to the BFC. The snapshot does not present a BIC.

2. Fail: The function or feature tested is present in the snapshot but it does not work as

the test anticipated according to the BFC. This snapshot is considered as candidate to

be the BIC or FFM.

3. Not-Runnable: The function or feature tested is not present in the snapshot, thereby

the test cannot run.

There are four different scenarios to illustrate how to apply the hypothetical test into the



88 CHAPTER 5. THE THEORY OF BUG INTRODUCTION

linear vision precedence of the BFC(i) in order to identify whether the BIC exists. In these

scenarios it is considered that the TSB have 100% of coverage and that it can run indefinitely

across the history of the source code. Thus, the TSB is passed to all the snapshots (ancestral

commit set) in search for the one that fails; if found, it will be consider it as a candidate for

the BIC or FFM.

Figure 5.3 shows how to apply the hypothetical test to the linear vision precedence when

there is a BIC and the TSB can be run in all the snapshots. To locate the BIC, the TSB is

passed into all the snapshots of the ACS. The BIS is the first that fails. It can be known that

the BIS is the BIC because the snapshot before passes with the same environment that the

BFS.

Figure 5.3: The Bug Introducing Snapshot is the Bug-Introducing Commit

Figure 5.4 shows how the hypothetical test is applied to the linear vision precedence

when there is a BIC but the TSB test cannot be run after a snapshot. This is because the tested

function or feature is not present in that moment. Here, the first BIS identified is also the BIC

because when it introduced the function or feature tested, without any other external changes,

it was buggy.

Figure 5.5 shows how the hypothetical test is applied to the linear vision precedence when

there is not a change in the ACS that introduced the bug and the TSB can run indefinitely

across the VCS of the project. The BFC fixed a bug caused by a change in the environment

or a external change, thus the TSB passes in the BFS but not in older snapshots. However,

when the TSB is run in the antecesor snapshots replicating the “new” environment or the
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Figure 5.4: The Bug Introducing Snapshot is the Bug-Introducing Commit

external change, it passes in all the posterior snapshots to the external change, and it fails in

the ancestor snapshots. In this scenario the first BIS before the BFC will be the FFM, there

was not BIC in the ACS.

Figure 5.5: The Bug Introducing Snapshot is the the First-Failing Moment

Figure 5.6 shows how the hypothetical test is applied to the linear vision precedence when

the BIC was in the project from the beginning and the TSB can run indefinitely across the VCS

of the project. The TSB is passed into all the snapshots of the ACS but it will alway fail. The

BIC is the first snapshot in the ACS. Our hypothesis is that this scenario is not common.

5.2.2 Criterion to apply to the Test Signaling a Bug

As mention earlier, when the history of a project is linear, researchers can test the ACS(i)

one by one and run the TSB. On the opposite, when the history of the project is not linear,

it may have multiple branches to be tested. Furthermore, as the failure might be present in
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Figure 5.6: The first snapshot is the Bug-Introducing Commit

some simultaneously existing branches and absent from other branches the concept of the

FFM may be uncertain. However, at first glance, and assuming that theoretically the test can

be run for all snapshots in the ACS(i), the outcome of the TSB still find sections in one or

more branches where the test would fail. Thus, the model is still able to find the suspicious

snapshots to be the BIC or FFM.

It may be possible that in some scenarios, the proposed model should define the BIC as

the one which is topological “the first one” in the faction of continuously failing snapshots.

It also may occur that, the presence of multiple parallel branches cause two or more commits

in parallel start to fail until the BFC. However, it may be an indication that the bug was in-

troduced into the source code, independently, in several branches or it was copied (or written

equally by chance) in several branches. Our hypothesis is that these scenarios are not com-

mon, however, we need to include them in the theoretical model and verify this hypothesis in

the future work.

Thus, to accommodate this case, we could extend the notion of BIC to “the set of BIC”,

which would be those “commits corresponding to the first snapshot to fail, continuously until

the BFC, in several branches that lead to the BFC”.

Furthermore, depending how the TSB fails there may be different situations, the re-

searchers should decide whether the BIS is a BIC, a FFM, both, or undecided.

1. Undecidable: When we cannot be sure to find the FFM or the BIC. In this class, we

may not find the FFM between all the ACS(b) using the hypothetical test, for example

due to the lack of information.

2. The BIC is the FFM: When we can find the BIC between all the ACS(i) using the
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hypothetical test and furthermore, it is the FFM.

3. There is only FFM: When the bug was not caused by a change belonging to the

ACS(i) but, another external factors cause the failure such as: (1) There is a change

in the dependencies of the project; (2) There is a change in the requirements of the

project; or (3) There is a bug in APIs used in the project. In this class, we will find

the FFM using the hypothetical test and it will be the first time that the malfunction

manifests itself in the project.

Nevertheless, it would appear that automatizing this process is tedious and complex, be-

cause all the external dependencies used in the project makes it more complicated to build an

isolated test to run in each previous change. However, we still rely this can be possible thanks

to studies such as the one performed by Bowes et al., which provides a core list of testing

principles that focuses on different quality aspects other than effectiveness or coverage. For

our research, the most interesting principle is the test (in)dependency which describes that a

test should be able to run in any order and in isolation. In addition, the test should not rely

on other tests in anyway. Allowing practitioners to add new tests without keeping in mind

dependencies or effects they might have on existing tests [Bowes et al., 2017].

5.3 Algorithm to Find the BIC and the FFC

Figure 5.7 presents the decision tree in order find the BIC, whether it exists, and the FFM.

This decision tree is implemented in our model and includes the current shortcomings in the

state-of-the-art approaches based on backtracking the lines that have been modified in the

BFC in order to find the BIC.

1. Lack of guidelines when SZZ identifies more than one pc: The decision tree can

distinguish when there are more than one previous commit and what needs to be done

to identify the BIC or the FFM.

2. Only new added lines in the BFC: The decision tree can distinguish when there are

only new lines added in the BFC. In this case, the PC Set is computed by identifying

the pc of the lines surrounding the new additions.
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3. Modifications are not related to the root cause of the bug: The TSB does not test the

functions or features that are not related to the root cause of the bug.

4. More than one issue are addressed by the BFC: The TSB only implement the test

for the functions or features that caused the bug.

5. Lines correct at the time of their insertion: The TSB always fails with the BFS

environment in the snapshots, identifying the FFM.

6. Dormant Bugs: The TSB will identify the first snapshot in which the test fails, identi-

fying the BIC.
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Figure 5.7: Decision tree to identify the BIC and the FFC
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Chapter 6

Empirical Study on the Applicability of

the Theory

This chapter presents an empirical study on the applicability of the theoretical model that

was presented before in Chapter 5. The empirical study was carried out through analyzing

the public data sources from two OSS projects, Nova and ElasticSearch. This study can be

extended to others projects as long as they use VCS and bug-tracking systems. The goal

of this Chapter is the application of the proposed model, that defines the code change that

introduced a bug in the system or determines whether it exists given a Bug-Fixing Commit

(BFC). Furthermore, this model enables to define the “gold standard” to be defined where

commits in the repositories are Bug-Introducing Commits (BICs).

This chapter is divided into three sections. The first part is a brief introduction to the

projects and arguments its election as case studies to identify the origin of bugs.

The second part clearly defines the methodology to manually analyze and identify the BIC

given a BFC. This methodology explains how the raw dataset has been filtered and details in

stages the approach to identify the BIC given a specific BFC.

Lastly, the third part presents the results after applying the theory into Nova and Elas-

ticSearch. The obtained results give more insight into the problem of correctly identifying

the BIC by comparing the “gold standard”, with the performance of some state-of-the-art

approaches. It computes the real false positives and false negatives.

95
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Table 6.1: Main parameters of the Nova project, June 2018.
Parameter Size

Companies Contributing 216
Commits 32474
Contributors 1602
LOCs 4581836
Resolved Bugs 1930

6.1 Case studies and datasets

There are two case studies that are explained in subsections 6.1.1 and 6.1.2. Both projects

have similar characteristics that are interesting and worthwhile to study, however, they also

have some differences that may enable the results to be extended to other open source projects.

6.1.1 Nova

Nova is the most active module of OpenStack project in terms of contributions. OpenStack

is a cloud computing platform that is used to build a SaaS (software as a service) with a huge

development community thereby making it an interesting project to study. OpenStack has

a considerable growth of approximately 350 times in code size and 250 times in number of

commits since its first release in November 2009. It counts with more than 7,900 contributors,

and significant industrial support from several major companies such as Red Hat, Huawei,

IBM, HP, SUSE, etc. OpenStack is mainly written in Python. Currently it has more than

328,800 commits with more than 47 million lines of code1. All its history is saved and

available in a version control system2, an issue tracking system (Launchpad3) and a source

code review system (Gerrit4). Table 6.1 provides a summary of the Nova project. There are

1,602 distinct authors identified in the project from more than 200 different companies.

In addition to the enormous diversity of people and companies contributing to Nova, the

project has other characteristic that make it a good case of study.

• Research friendly: Both the bug tracking system and the version control system (VCS)

1http://stackalytics.com
2https://wiki.openstack.org/wiki/Getting_The_Code
3https://launchpad.net/openstack
4https://review.openstack.org/
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are a trustful data source for retrieving bug-fixing information. In addition, the policy

of adding the link of the Bug-Fixing Commit into the bug report information is helpful

when linking and analyzing the two data sources.

• The openness of dataset: all of the data analyzed in this chapter and through the thesis

are publicly available. This supports the replicability of the experiments which is a

fundamental part of Empirical Software Engineering.

• linearVCS: OpenStack policy tries to maintain a linear history This makes analyzing

Nova efficient since the cases where a bug might be present in some simultaneously

existing branches can be reduced.

• Programming Language: Nova uses Python as programming language and it is an in-

terpreted language that do not need to be compiled before running. In addition, Python

is dynamically typed which means that the type for a value is decided at runtime and

not in advance. These specific characteristics of Python might affect the way that bugs

are introduced into the source code of a project.

Nova Dataset: Launchpad works with issue reports called tickets. These tickets describe

bug reports, feature requests, maintenance issues, and even design discussions. We randomly

retrieved 125 closed tickets from Launchpad that had a commit merged into the source code

and were reported during 2015. However, to correctly identify the BIC of a BFC, it is neces-

sary that a bug exists. For that reason, we only analyzed tickets that report real bugs. Thus,

to ensure that the tickets described real bug reports, two different researchers were assigned

to analyze them. This procedure was not a trivial task; it is very labor intensive as it has to

be done manually. As the task is repetitive, we developed a web-based tool5 described in Ro-

driguez et al. [Rodrı́guez-Pérez et al., 2016] that helps with the classification process. This

tool offers relevant information to decide if a ticket is describing a bug report or not, this in-

formation was extracted automatically from the project repositories. As it offers a web-based

interface, the tool allows for collaboration. Traceability and transparency in the identification

of bug reports is also possible as all decisions are stored.

Each ticket was (manually) categorized into one of following three groups:

5http://bugtracking.libresoft.info
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Table 6.2: Main parameters of the ElasticSearch project, June 2018.
Parameter Size

Commits 39402
Contributors 1032
LOCs 1187732
Resolved Bugs 4958

1. Bug Report: The ticket describes a bug report.

2. Not Bug Report: The ticket describes a feature, an optimization/refactoring of the code,

changes in test files, or any other situation. . . but not a bug report.

3. Undecided: The ticket presents a vague description and cannot be assigned without

doubts to any of the previous groups.

Subsequently, the tickets agreed6 upon by both researchers as part of the bug report were

included into the final dataset. Then, the bug reports were linked to their BFCs. The final

dataset counts up to 60 bug reports that are linked with BFCs.

6.1.2 ElasticSearch

ElasticSearch is a distributed Open Source search and analytics engine written in Java. It

is continuously evolving since its first release in 2010 and currently counts with more than

3,900 commits. This project was chosen because it has a similar number of commits to

OpenStack and its policy of labeling issues is very strict. In the project, the developers use

the label “bug” when the issue describes a bug according to their opinion. Thus, researchers

might rely on the developers’ opinion, and they might be sure that the issues retrieved from

the issue tracking system are real bug reports and as a consequence, their (BFCs) are fixing

real bugs. The code of ElasticSearch is hosted in GitHub7, and its issue list is available in

GitHub8 as well. Table 6.2 provides a summary of the ElasticSearch project. There are 1,000

distinct authors identified in the repository and more than 4,500 closed bug reports.

6Please, consider the reading of the paper for further information about the analysis and the ratio of agree-

ment between the researchers
7https://github.com/elastic/elasticsearch/
8https://github.com/elastic/elasticsearch/issues
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In addition to the enormous diversity of people and companies contributing to Elastic-

Search, the project has other characteristic that makes it a good case study.

• Research friendly: The code and bug reports are hosted in GitHub and it is a trustful

data source for bug-fixing information. In addition, the policy of adding the link of the

bug report number or the pull request number into the BFC is helpful when linking and

analyzing the two data sources.

• The openness of dataset: all of the data analyzed in this Chapter and in the thesis

is publicly available. This helps with the replicability of the experiments which is a

fundamental part of Empirical Software Engineering.

• No linearVCS: Contrary to OpenStack, ElasticSearch repository counts with more

than 160 branches. This might make the project more complicated to analyze.

• Programming Language: ElasticSearch uses Java as the programming language. Java

encourages error-free programming as it is strictly typed, it performs run-time checks

and is independent of hardware. These specific characteristics of Java might affect the

way that bugs are introduced into the source code of a project.

Dataset ElasticSearch :

ElasticSearch works with issue reports labeled as “bug” which discards the necessity of

filtering those issues that are not describing real bug reports. Thus, since ElasticSearch and

Nova have similar amounts of commits, we randomly retrieved the same amount of closed

bug reports that are in Nova dataset, with a total of 60 bugs which were reported during 2015

and which had a commit merged into the code source. Then, these bug reports were linked to

their BFCs, thereby the final dataset counts up to 60 real bug reports that are linked with real

BFCs.

6.2 Methodology

The methodology used in this empirical study is divided into two parts, the first part is the

filtering stage where the researchers ensure datasets fulfill the requirements for analysis under
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the theory of bug introduction. While the second stage describes each of the steps from the

Bug-Fixing Commit until the identification (or not) of the BIC and the FFM.

Figure 6.1 provides an overview of each step involved in our study and their outcomes.

Figure 6.1: Overview of the steps involved in our analysis

6.2.1 First Stage: Filtering

This stage ensures that the bug reports stored in the datasets can be applicable to our model.

Despite the policy of bug labeling in ElasticSearch and the agreement on classifying bug

reports from other issues in Nova, this stage analyzed carefully each piece of information

in the bug reports to ensure the “gold standard”. Thus, the datasets should only store bugs

that are considered bugs at the moment of bug fixing.This also ensures that if there are issues

reported as bugs but are discovered to be new feature requests or improvement suggestions,

they are excluded.

6.2.2 Second Stage: Identifying the First Failing Moment and the Bug

Introducing Commit of a Bug-Fixing Commit

The input of this stage is a set of “real” bug reports from Nova and ElasticSearch. These bug

reports describe “real” bugs in the moment of their fix. In this stage, we manually determine

if a given change was the first one to show a malfunction.

Analyzing the information from the bug reports and the VCS we might identify the BIC

and the FFM of a BFC. The identification of a BIC means that the bug introduction moment
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coincides with a commit, i.e., a change that can be witnessed in the version control system to

either source code or configuration files. In some situations, the failure is not directly caused

by a change visible in the version control system, but rather, the failure is due to changes in

the context or environment. The moment when the failure manifests itself is the FFM. In

some, but not all cases the BIC coincides with the FFM.

Since the BIC and FFM can be any of the ancestor commits, it is necessary to manually

analyze them in order to ensure the credibility of the “gold standard”. To better understand

this process, the steps are detailed in the following paragraphs. To be noticed, that some of

the concepts used in the next paragraphs have been described in Section 5.1.1 that explains

the proposed terminology.

Finding the lines that fixed the bug, LC(c) :

At this stage, the source code that fixed the bug must be identified; a generic bug is referred

to as b. Therefore, it is important to:

• Identify the change(s) that fixed the bug, BFC(b). In most of the analyzed cases this

set was always singleton, meaning that in each bug there was a unique BFC. However,

in the bug report #14427959 there were two different BFCs that fixed the bug. To

simplify this process, the methodology assumes that the set of BFC(b) is singleton,

and in the case where more than one BFC fixed the bug, both BFCs should be analyzed.

• Find the lines that the BFC(b) modified to fix the bug, LC(c), where c is the BFC. In

the bug report, sometimes there is a lot of information related to the code review process

and the BFC. By applying “git diff” it is possible to identify what lines have been

added, modified or deleted between the version after the BFC(b) and the previous one.

There is also the possibility to visualize these changes, between the version after the

BFC(b) and the previous one, using the friendly visualization that GitHub provides.

• Filter out lines that are not code: Lines that have been modified, but do not contain

source code (e.g., comments or blank lines) are not considered, and as a consequence

they are not analyzed. In addition, there was a BFC10 that closed two different bug

9https://bugs.launchpad.net/nova/+bug/1442795
10https://github.com/elastic/elasticsearch/commit/beaa9153a629c0950182e4e8c4f8eedd1c63f49f
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reports. In this case, the lines related to the bug that was not under analysis were

filtered out.

Determining, for each of those lines, LC(c), what immediate previous commit last changed

the lines:

Each individual line touched by the BFC(b) has only one previous commit. However, there

could potentially be as many previous commits as modified lines in the BFC(b), (see the

genealogy tree in subsection 5.1.2). Thus, taking this genealogy tree as reference, the result

is a set of all previous commits of the bug b, we will refer to it as PCS(b).

Analyzing each of these previous commit and their descendant commits to determine

the BIC and the FFM:

This analysis uses information available in the description of the ticket as well as from the logs

of the BFC(b) and commits in the PCS(b). After understanding the bug and the changes

that fixed the bug, it is necessary to identify the BIC, whether it exists, as well as the FFM.

Thus, the identification of the BIC starts with the analysis of the PCS(b), for each of the

commits belong to the PCS(b), the lines changed are analyzed in order to find which one

introduced the bug. At this point, there are three different scenarios and the behavior is

different depending on the following conditions:

1. The commit introduced the bug: This commit is the BIC because it introduced the error

at the moment of their writing. It was possible to identify the BIC which is also the

FFM because it is the first commit that manifested the wrong behavior. According to

the theoretical model, the TSB passes in the BFS and the BIS is one of the snapshot

belongs to the PCS(b).

2. The commit does not insert the bug: In this case there will be two possible outcomes:

• The lines in the commit are correct, they do not insert the error at the time of their

writing and other external factors caused the bug. There is no BIC in this scenario

and the analysis should focuses on understanding whether this pc is first moment

when the bug manifested itself. According to the theoretical model, the TSB is
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run in all of the ACS(b) and it passes in the BFS but it always fails in the ancestor

snapshots. However, if the TSB is run in the ancestor snapshots replicating the

change that fix the bug, it passes up to the snapshot previous to the FFM. Thus,

the first BIS that passes in the sequence of BIS before the BFS is the FFM.

• The lines in the commit are syntactic sugar or semantically equivalent modifi-

cations (refactoring): This means that the commit retains the same behavior as

before, thereby it is required to navigate back into, the ACS(b) and start again in

the first point of this list.

3. It is not sure whether the commit introduced the bug: In this case, it is important to

continue navigating back into the DCS(b), if this commit introduced for the first time

the lines of the LC(c) and it is not clear whether they are buggy, the commit is classified

as “undecided”. This means that after the analysis, the BIC was unable to be found

manually despite its possible existence.

6.2.3 Outcomes

At the end of the process there are three possible outcomes for each bug report analyzed. The

outcomes are related to the identification of the BIC and FFM given a BFC. These outcomes

are explained in the following list:

• A BFC has a BIC: In this case it is sure that there is at least one BIC among the

previous commit set, descendant commit set or ancestor commit set. However, during

the manual analysis it may occur that:

1. The BIC was able to be identified manually or,

2. The BIC was unable to be identified manually.

Furthermore, in this scenario, the BIC is also the FFM.

• A BFC does not have a BIC: In this case, it can be sure that any line contained the

bug when it was committed into the source code, and due to other factors such as

modifications in internal resources, changes in external resources, buggy code in third-

parties or changes in the requirements that invalidate previous assumptions the bug
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manifested itself. It can also be confirmed that none of the ancestor commits introduced

the error, thereby none of them can be blamed as the cause of the bug. In this scenario,

we only can identify the FFM and it may occur that:

1. The FFM was able to be identified manually or,

2. The FFM was unable to be identified manually.

• It is not clear whether or not a BFC has a BIC: Some bug reports do not detail enough

information about the failure and the BFC is not sufficient in deciding whether or not

there is a BIC. Also, some commits have changes that are very complex to understand

and we cannot decide whether they introduced the bug or not.

6.3 Results

This section presents the results of the empirical analysis in order to locate the BIC and

the FFM in two case studies, Nova and ElasticSearch. Furthermore, there is a comparison

between the results obtained after applying the proposed model with the results obtained after

applying an enhancement of the SZZ algorithm [Kim et al., 2008].

6.3.1 First Stage

During the first stage, 4 bug reports were removed from the initial set of 120 bug reports.

Then, there are 57 bug reports in Nova and 59 bug reports in ElasticSearch that are consid-

ered into the next stage. The reason to removed the bug report #118529011 was the discor-

dances in the comments between the developers of Nova. These are the comments where the

discordance is obvious:

• “I am not sure that I consider this a bug. Without –all-tenants=1, the code operates

under your own tenant. That means that –all-tenants=1 foo should really be a no-op

without –all-tenants=1.”

• “I disagree, mainly because the structure of the requests and code path should largely

be transparent to the user. I would suggest that specifying –tenants should imply you

11https://bugs.launchpad.net/nova/+bug/1185290
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are doing a query across –all-tenants=1unless the –tenants specified is the same as what

is contained in OS TENANT NAME (the unless part is debatable)”

Furthermore, other reasons were also discovered, for instance the bug #143157112 re-

ported a bug in a test file. It was removed because a bug in a test file does not mean that the

source code of the project may contain a bug. It was also discovered that some bug reports

such as #774013 describe hypothetical scenarios. In these cases, the bug report details a possi-

ble bug in the future. These bug reports were removed from the analysis because although the

developers described them as bug reports, it is understood that when the BFC was submitted,

the bug had not occurred in the project.

6.3.2 Second Stage

In this stage we identify the BICs, and how they are related to BFCs by applying the proposed

model. This model enables the “gold standard” to be defined where the BICs in Nova and

ElasticSearch caused the BFCs. This chapter answers two different questions:

The first part presents the results after applying the model to the datasets. Thus, to demon-

strate how the model works, we gathered a set of BFCs from two projects, and used them to

manually identify their BICs, when they exist. As mentioned before, the definitions of BIC

and BFC were applied based on the existence of a TSB. In case we were unsure of the exis-

tence of the BIC, its corresponding BFC was removed from the analysis, since the empirical

study is focused in the cases when a BIC can be found or when it do not exist for certain.

The second part presents the effectiveness of the SZZ algorithm. Once we have the “gold

standard”, we can compute how this algorithm, and others, “really” performs. This evaluation

is an important contribution to the current literature because, as far as we know, any previous

studies have carried out this empirical analysis.

6.3.3 Explanation of the Datasets

This section explains the datasets of Nova and ElasticSearch that were manually analyzed to

identify the BIC and the FFM.

12https://bugs.launchpad.net/nova/+bug/1431571
13https://github.com/elastic/elasticsearch/issues/7740
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The datasets of Nova and ElasticSearch contain 57 bug reports linked to 59 BFC. In Nova

there are 9 BFCs with only new added lines to fix the bug, almost the same number that

ElasticSearch which has 8 BFCs with only new additions. The total number of previous

commits identified in Nova was 124 and, 112 in ElasticSearch.

Figure 6.2 presents the average of previous commits, files and test files in each bug report

of Nova and ElasticSearch. On average, both projects are similar around 2 previous commits

per BFC, although it is slightly higher in Nova with 2.17 previous commit per BFC. However,

the average of files touched by the BFC is higher in ElasticSearch, with 3.18 files14 per BFC.

The average of test files modified in a BFC is almost the same in both projects with 1.53 in

Nova and 1.60 in ElasticSearch.

Figure 6.2: Mean of previous commits, files and test files per Bug Report in Nova and Elas-

ticSearch

6.3.4 RQ1: What is the frequency for a Bug-Fixing Commit being caused

by a Bug-Introducing Commit?

Table 6.3 shows the number of BFCs that have been caused by BICs and the number of BFCs

that have not been caused by a BICs in the datasets. The trend in the results of both projects is

similar as both present higher percentage of BFCs caused by a BIC. However, the percentage

of BFCs that were not caused by a BICs is more representative in Nova with 21% of the BFCs

14the test files are not included here
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Table 6.3: Percentage of Bug-Fixing Commit (BFC) with a Bug-Introducing commit (BIC),

without a Bug-Introducing Commit (NO BIC) and Undecided in Nova and ElasticSearch

(ES).

BIC NO BIC

Nova 45 (79%) 12 (21%)

ES 54 (91%) 5 (9%)

Table 6.4: Reasons why a Bug-Fixing Commit is not caused by a Bug-Introducing Commit

Nova ElasticSearch

Co-evolution Internal 5 (42%) 2 (40%)

Co-evolution External 2 (17%) 1 (20%)

Compatibility 1 (8%) 0 (0%)

Bug in External API 4 (33%) 2 (40%)

being fixing a bug that was not introduced in the system. On the contrary, this percentage is

lower in ElasticSearch, where only the 9% of the BFCs were not caused by a BIC.

RQ1.1: Which reasons may explain that a Bug-Fixing Commit is not caused by a Bug-

Introducing Commit?

Additionally, in those cases where the BFC does not present a BIC, we have looked for its

root cause. Table 6.4 shows the main reasons for a bug not having a BIC. Furthermore, they

are explained below:

• Co-evolution Internal: Changes in the source code related to satisfy the new require-

ments of the project. Since internal resources have been modified or requirements have

been changed invalidating previous assumptions. The bugs caused by the co-evolution

internal can be explained from the point of view that the code is not reflecting a new

change or requirement of the project and the source code is manifesting the failure.

• Co-evolution External: A bug is caused by some external change(s). External resources
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have been modified without a previous notification and the source code of the project

starts to fail. The bugs caused by the co-evolution external are easiest to understand

than the previous ones, because they can be explained from the point of view that a

change/update in the source code of an external artifact used in the project has caused

the bug.

• Compatibility: Bugs are caused by an incompatibility between software and hardware

or an incompatibility with some operating systems. We consider that these bugs do not

have a BIC because the failure is not present always, it manifests itself depending on

compatibility factors such as the hardware used.

• Bug in External API: A bug in the API of a external library to the project has caused

a bug in the source code of the project. In this scenario the BIC exists but it cannot be

identified in the ACSBFC because this change is not in the VCS of the project.

These reasons explain why the BIC cannot be identified given a BFC. In Nova the prin-

cipal reason with a 42% occurrence rate was the Co-evolution of the lines changed to fix

the bug with the internal requirements of the projects. The second reason with a 33% of the

cases where the presence of bugs in external APIs that are used in Nova. Then, the third

most frequent reason is the Co-evolution of the lines changed to fix the bug that is related to

third-parties code or external artefacts. Finally, the Compatibility reasons explain why in 8%

of the cases the BFC was not induced by a BIC. On the other hand, in ElasticSearch the per-

centages are equally distributed with a 40% occurrence rate in Co-evolution internal and Bug

in External API, and 20% of the cases belongs ti Co-evolution External with the exception

that bug caused by the incompatibility of hardware and software were not found.

RQ1.2: Could the location of a bug be modeled on the Bug-Introducing Commit and

First-Failing Moment?

Table 6.5 shows the percentage of BIC and FFM that have been manually identified by using

the model. By definition, and in theory, our model is able to identify the FFM and the

BIC, and whether it exists, but in practice, since the identification needs to be done manually,

sometimes the BIC or the FFM cannot be identified for certain. To be noticed, these BFC that

were classified into “Undecided” in Table 6.3 are not considered in Table 6.5 since researcher



6.3. RESULTS 109

Table 6.5: Percentage of Bug-Introducing Commit and First Failing Moments identified after

applying the theoretical model.

BIC = FFM only FFM Undecided

Nova 34 (60%) 12 (21%) 11 (19%)

ES 38 (64%) 5 (9%) 16 (27%)

were not sure whether they have a BIC or not. Thus in Nova, from the 45 bugs caused by

a BIC, we correctly identified 34 BICs which are also FFMs. From the 12 bugs manifested

without a BIC, we successfully identified 4 FFMs. In the dataset of ElasticSearch, from the

54 bugs caused by a BIC, we correctly identified 38 BICs which are also FFMs. Form the

5 bugs manifested without a BIC, we were unable to identify manually the FFMs. Due to

the complexity to identify and ensure correctly the BICs and FFMs, both projects have the

“Undecided” category, which implies that we have suspicious commits to be the BIC and

FFM but we cannot be completely sure because of their complexity or lack of information.

RQ1: 79%-91% of the Bug-Fixing Commits analyzed were caused by

a Bug-Introducing Commit,BICs. However, 9%-21% of the bugs were

caused by other factors different from introducing faulty code in the

source code. The main reason why a bug is not caused by a BIC in both

projects is the co-evolution internal.

6.3.5 RQ2: What are the specifications that define the effectiveness of

an algorithm used to locate the origin of a bug?

After applying the model and identifying the number of BICs and FFMs in our datasets,

we obtained the “gold standard” where the number of BFCs with a BIC and without a

BIC can be known for certain. For that reason, we are able to compute the true/false pos-

itives and true/false negatives for an algorithm, and for that purpose the original SZZ algo-

rithm [Śliwerski et al., 2005b] was selected, but we removed the changes in the comments

and blank lines from the analysis when using this algorithm. Also, we analyze the SZZ-1

[Kim et al., 2006c].

The SZZ algorithm does not compute BFC with only new lines added, and in the “gold
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Table 6.6: Results of True Positives, True Negatives, False Negatives, Recall and Precision

for the SZZ and SZZ-1 algorithms assuming that the algorithm flags all of the commits belong

to a set of PCS(b) as BIC.

True Positives False Positives False Negatives Precision Recall F1-Score

Nova (SZZ) 25 (26%) 54 (56%) 17 (18%) 0.32 0.60 0.42

Nova (SZZ-1) 28 (30%) 51 (55%) 14 (15%) 0.35 0.58 0.44

ES (SZZ) 26 (27%) 59 (61%) 12 (12%) 0.31 0.68 0.43

ES (SZZ-1) 27 (28%) 58 (60%) 11 (12%) 0.32 0.71 0.44

standard” of Nova there are three BFC with only new lines whereas in ElasticSearch there

are seven. These cases are the false negatives of SZZ. Furthermore, the average of previous

commits per BFC is around two, this means that the SZZ algorithm may identify more than

one possible BIC per BFC. In this case, given the PCS(BFC), we compute a true positive

when a BIC exists and it is identified by the SZZ, and the rest of previous commits are

computed as false positives.

The “gold standard” of Nova consists of 34 BFCs with a BIC and 12 BFCs without a BIC.

While the “gold standard” of ElasticSearch is made up of 38 BFCs with a BIC and five BFCs

without a BIC. When applying the SZZ algorithm to the set 46 BICs of Nova, it returns a

set of 7915 possible BICs. When the algorithm is applied to the 43 BFC of ElasticSearch, it

returns a set of 8516 possible BICs. Table 6.6 presents the percentage of true/false positives

and false negative for the SZZ and SZZ-1 as well as the precision, recall and F1-score in each

project.

In the literature there is no clear heuristic to follow by researchers when the SZZ identifies

a set of possible BICs for a BFC. In Table 6.6 it is assumed that regardless of whether this case

occurs, the algorithms flag all of the commits belonging to that set as possible BICs. However,

some researchers in the literature state that when more than one commit is flagged, the BIC

15Three of the BFCs in the “gold standard” have only new lines, thus the SZZ cannot be applied. We compute

these cases as false negatives because.
16seven of the BFCs in the “gold standard” have only new lines, thus the SZZ cannot be applied. We compute

these cases as false negatives.
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Table 6.7: Results of True Positives, True Negatives, False Negatives, Recall and Precision for

the SZZ-1 algorithm assuming that the algorithm only flags the earlier commits that belongs

to a set of PCS(b) as BIC.

True Positives False Positives False Negatives Precision Recall F1-Score

Nova (SZZ-1) 25 (45%) 14 (25%) 17 (30%) 0.64 0.60 0.66

ES (SZZ-1) 16 (28%) 20 (34%) 22 (38%) 0.44 0.42 0.43

should be the earlier one in time. With this assumption, the number of true/false positives

and true/false negatives of the SZZ-1 is once again computed using the “gold standard” of

Nova and ElasticSearch, we selected only SZZ-1 because it performs better results than SZZ.

Now, when applying the SZZ to the 46 BFC of Nova, it returns a set of 43 possible BICs.

Furthermore, when SZZ is applied to the 43 BFC of ElasticSearch, it returns a set of 36

possible BICs. Table 6.7 presents the percentage of true/false positives/negatives for SZZ-1

as well as the precision, recall and F1-score in these scenarios.

RQ2: SZZ-1 performs better results than the original SZZ, but when

applying the heuristics it still computes 25% of false positives in Nova

and 34% in ElasticSearch. Assuming that the earliest commit caused

the BIC only improves the F1-score in Nova.

RQ2.1: Which reasons caused that a previous commit identified by the algorithms was

not the BIC?

Additionally, in those cases where the previous commit identified by the algorithm was not

the BIC, we have looked for its cause. And without being exhaustive, we have identified

some of the most common reasons why the previous commits analyzed were not the BIC,

this reasons are following explained:

• Variable Renaming: It is a modification in the source code that changed the names of

variables. When the algorithms identify a previous commit like this, it means that the

line was already buggy or that this change is not related to the bug.

• Equivalent change: It is a modification of the source code to improve code quality
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and efficiency such as optimization and refactoring. When the algorithm identifies a

previous commit commit like this, it means that the bug was already in the logic of the

program because the code optimization did not changed the behavior.

• API changes: It is a modification in the APIs of the program, normally the addition

of a new argument. When the algorithm identifies a previous commit like this, and it

is not the BIC, it means that the lines did not contain the bug, but the evolution and

necessities of the project make that the line manifested the bug.

• Obsoleted Code: It is source code that have been useful in the past, but is no longer

used. When the algorithm identifies a previous commit like this, it means that it is not

the BIC because it removed obsolete code.

• Changes done by the BFC: The BFC may decide to change some parts of the code that

are not related to the bug.

In the empirical study we quantitatively and qualitatively investigate the existence of BIC

given a BFC by using the information stored in the control version system, bug tracking

system and code review system of the software projects. For the quantitative analysis, we

compare the true positives BIC and false negatives BIC manually analyzed across the results

obtained from SZZ-based techniques. From the qualitative analysis, we inspect subset of the

false negatives and false positives BICs to enumerate the most common causes for these two

groups.



Chapter 7

Results and Discussion

This chapter aims to summarize the main results obtained in Chapter 4 and Chapter 6. The

threats to validity and the potential automation of the theoretical model presented in Chapter 5

is also discussed.

We first discuss the threats to validity which raise potential questions that are answered in

the following sections. Then, there are three subsections which present the results according

to the objectives of this dissertation.

The first subsection presents the discussion of the SLR on the credibility and reproducibil-

ity of the SZZ algorithm. The importance of this discussion lies on the impact of this algo-

rithm in the Empirical Software Engineering (ESE) as it has been cited more than 600 times

since its publication in 2005.

The second subsection uses the results from the SLR to discuss the theoretical model

to identify the change that introduced a bug. This model is mainly motivated by the short-

comings of the SZZ previously identified and the necessity of better understand software

evolution.

Finally, the last subsection discusses the applicability of the theoretical model as well

as the implications of the results from the empirical study where this model was applied.

This model identifies the Bug-Introducing Commit (BIC) and whether it exists for a given

Bug-Fixing Commits (BFC) based on the assumption of a hypothetical test that can be run

indefinitely through the entire history of the software project.

113
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7.1 Threats to validity

Wohlin et al. claims that there are four main types of validity threats in Empirical Software

Engineering research: construct, internal, external and conclusion [Wohlin et al., 2012].

Construct validity: This type of threat is in regards to the validity of the metrics used in

the empirical research method and whether they claim to be measurable. In the context of

this thesis, this validity aspect will focus on the measures and concepts used and the potential

problems that may cause bias in the results of the metrics during retrieval.

Internal validity: Internal validity is the degree to which a causal conclusion based on a

study is warranted, which is determined by the extent a study minimizes systematic errors.

An attempt was made to minimize this threat by following the procedures for performing

SLRs described in [Madeyski and Kitchenham, 2017] and by reducing as much as possible

the interaction with tools that can introduce bias in the results. Furthermore, replications

packages are offered thereby that third parties can inspect our sources.

External validity: External validity is the degree to which results in this dissertation can be

generalized to other contexts. In the empirical study, we selected two case studies: Nova, and

ElasticSearch; with its particularities. Thus, this thesis cannot claim that our results can be

generalized to other projects. However, researchers should not undermine the value of these

case studies.

Conclusion validity: Conclusion validity is related to how sure the conclusions reached in

regards to the relationships in our data are reasonable; this does not affect our approach.

7.1.1 Construct validity

Construct validity is the degree to which a research work represents what it is expected to

measure. In the context of this thesis:

1. In the Systematic Literature Review:
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• The impact of the SZZ is measured by the number of publications per year that use

it. As well as the types and diversity of venues that published these publications.

• The reproducibility of the publications that use the SZZ is measured by the avail-

ability of a detailed description and data set or of a replication package.

• Since the studies have not been replicated or reproduced in this thesis, the effect

on reproducibility is to be considered. However, to mitigate this, an upper limit

of publications that may be reproducible are listed.

2. In the Empirical Study:

• The BFC is a change that fixed a bug which was previously described in a bug

report. As mentioned before, there may be cases where commits detected as the

fix of a bug turn out to be false because the bug report did not describe a real bug.

To mitigate this threat, in Nova the bug reports were analyzed by two researchers

to ensure that their description was a real bug. Then, in a second round, the

obtained datasets were again reviewed to filter out the uncertain cases.

• The BIC is the commit that, involuntary, introduced a bug in the project. To

accurate identify the BIC, it was manually selected by backtracking the fixed lines

of a BFC. If the BFC only had new lines, we inspected and tracked back their

surrounding lines. In case of doubt whether a commit is a BIC, it was directly

rejected from the final “gold standard”.

• FFM is the change that manifests the failure the first time. It is identified manually

and based on the hypothetical test. In case of doubt whether a commit is a FFM,

it was rejected from the “gold standard”.

We manually analyzed 187 out of 1070 papers during the SLR and 257 previous commits

during the empirical study, thereby human errors might have occurred. This thesis provides

replication packages with the raw data used in the SLR and the empirical study. Thus, re-

searchers have the possibility to improve, check and replicate the work of this thesis.

7.1.2 Internal validity

The internal threats to validity are:
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1. In the Systematic Literature Review:

• There might be a selection bias due to having chosen Google Scholar and Seman-

tic Scholar as the source of all publications on SZZ; other publications may exist

that are not indexed by Google Scholar or Semantic Scholar.

• There might exists publications that use the SZZ algorithm and not cite the origi-

nal publication or its improvements.

• The maturity of the field might also affect whether the study has been done in a

too early a stage to draw conclusions. However, that more than 10 years is enough

time to allow to extract valid lessons from its study.

2. In the Empirical Study:

• The limited sample size of bug reports used in this research is the main threat to

its validity. There may be the possibility that a prior unknown tendency occurs

in the selection of these 120 random bug reports. Our analysis requires a lot of

manual human effort, so meaningfully increasing the number of bug reports is

difficult. However, it should be noted that our numbers are in the order of magni-

tude of similar studies: for instance, Hindle’s et al. [Hindle et al., 2008] consid-

ered 100 commits in his study, Da Costa et al. [da Costa et al., 2016] considered

to manually analyze 160 bugs as a whole and 80 BICs. Finally, Williams and

Spacco [Williams and Spacco, 2008] manually analyzed 25 BFCs that contained

a total of 50 changed lines which were mapped back to a BIC.

• We are not experts in OpenStack and ElasticSearch, and although we have dis-

cussed and removed the uncertain cases, our inexperience may have influenced

the results of the analysis when identifying whether a bug has been in the system

from the very beginning or whether the code has always been clean.

• A random script was used to extract the bug reports from Launchpad and GitHub

that were reported during 2015. There could be unintended bias in the data

throughout the course of this year, for instance the phase of the project.

• There could be some lax criteria involving the subjective opinion of researchers.

To mitigate this, the Bug-Fixing Commit that was not sure was discussed. Fur-
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thermore, the “Undecided” category was added to mitigate possible false positives

from our dataset.

• Commits classified into “Undecided” group were rejected as our aim was to build

a trustable dataset in which we were sure that the bugs reports were “real” bug

reports and that the BICs and FFMs were as very accurate as possible. There may

be the possibility that those commits could have relevant information, and as a

consequence, some data that would vary the results.

7.1.3 External validity

The most important external threats are related to peculiarities of the projects:

1. In the Systematic Literature Review:

• The results about reproducibility using SZZ cannot be generalized to ESE re-

search because it was a case of study.

2. In the Empirical Study:

• The use of diff is the most extended way of providing diff information when

looking for the difference between two files. However, other ways of providing

diff information should be considered.

• This thesis only has selected two different programming languages, Java and

Python. It is possible that the study of different programming languages turns

out in different results.

• The use of Nova and ElasticSearch as the case studies implies a better understand-

ing of how bugs appear in these projects. However, Nova and ElasticSearch are

projects with a very rapid evolution and a very active community of developers.

It could be possible that other projects with fewer commits per year have different

results. A higher number of projects would enrich the study.
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7.2 Discussion

There are three different discussions, based on what has been presented in Chapter 4, Chap-

ter 5 and Chapter 6.

7.2.1 Discussion: Reproducibility and Credibility of the SZZ

Chapter 4 details the Systematic Literature Review on the use of reproducibility and credi-

bility of SZZ algorithm. It was demonstrated to be a widely used algorithm in ESE research.

The SZZ is proven to be significantly relevant, and that it is not limited to a niche audience.

However, it has become an important component of publications in top journals and promi-

nent conferences in many different topics of Software Engineering.

During the SLR, it was observed that the limitations of SZZ are well known and docu-

mented. Improvements have been proposed, with unequal success up to this moment. The

first part of the limitations –related to linking fix commits and bug tracking issues – has been

improved significantly, the enhancements for the second part that has to do with finding the

bug introducing change are still limited and accuracy has room for improvement.

Even if limitations have been widely documented, from our study, it can be observed

that this has not made ESE practices stronger. From the detailed study of the threats to

validity of publications using SZZ, SZZ-1, and SZZ-2, it is clear that most publications are

not reporting the limitations, and interestingly enough, limitations to the first part –which

have shown to be less relevant– are discussed more often than the second part. The fact

that 38% of the publications use the original SZZ is indicative of this regard. It is therefore

recommended for researchers who develop modifications of the SZZ algorithm, to publish

the software implementation in development sites such as GitHub, so other researchers can

fork the project. These forks can be easily traced, and the authors will be able to ask for a

specific citation to their solution if other researchers make use of it.

The reproducibility of the publications is discovered to be limited, and replication pack-

ages are seldom offered. The results presented in our research are in line with previous re-

search [Amann et al., 2015], although not as bad as the ones found for MSR in 2010 [Robles, 2010].

In any case, we think they are not satisfactory enough, and some reflections should be raised

on scientific methods used in our discipline.
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Even if using one of the improved versions of the algorithm helps with the accuracy of

the SZZ approach as pointed out in [Rahman et al., 2012]: “Accuracy in identifying Bug-

Introducing Commit may be increased by using advanced algorithms (Kim et al. 2006,

2008)”, they are seldom used and only 22% of the publications use one of the two (improved)

revisions of SZZ. It seems that researchers prefer to reinvent the wheel; 49% use an ad-hoc

modified version of SZZ in their publications instead of using other researcher’s improve-

ments. One possible reason for this is that papers that describe the SZZ algorithm or any of

its improvements do not provide a software implementation. Thus, researchers have to im-

plement it from scratch for their investigation. Our results show that in such a situation, what

is often practiced is the adaption of base SZZ algorithm with the addition of modifications,

resulting in an ’ad-hoc’ solution. For all ’ad-hoc’ solutions identified, there is an absence

of rationale on why other enhancements to SZZ have not been implemented. Another major

problem when using improvements to SZZ is that they have not been given a version/label.

Even if a revision of SZZ is used, publications often refer to it as SZZ, making it difficult to

follow, to reproduce, to replicate and to raise awareness on this issue.

This thesis provides a simple way to measure the ease of reproducibility and credibility

of research papers. Although this measure was formulated only to studies that make use of

the SZZ, we think that it can be adapted to other ESE studies easily. Thus, authors can easily

assess whether their papers offer a reproducible and trustable work (i.e., with scores above or

equal to 5). A Although authors were often addressed directly, the reviewers in the scientific

process must not forget their responsibility. It can be observed that authors are often detail-

focused when presenting their research; reviewers often have the required vision to evaluate

the studies objectively and retains the ability to take these details into consideration. This

helps authors to raise the level of their research to another standard. Thus, it is recommended

for reviewers to always question the listed points in Chapter 4 and adapt them to the context

of the research when performing a review of a paper which uses heuristics and assumptions..

It was observed that full comprehensive reports on reproducibility are seldom found. Only

15% of the total analyzed papers are classified as good and excellent quality with respect to

reproducibility. The research community should direct more attention to these aspects; we

believe that too much attention is put on the final result(s) (the product of the research: new

knowledge) as opposed to the research process. As researchers in the field of software engi-
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neering, we know that both, a high-quality product and process, are essential for a successful

advancement for the long term [Kan, 2002].

To summarize, it is considered important to highlight some of the lessons learned after

performing the SLR. The SZZ algorithm is based on heuristics and assumptions, thus to

provide more trustable results, it is recommended for researchers to specify (and argue) the

use of the methods/algorithms that mitigate the limitations of their studies. They must also

be aware of the risk of every assumption used and, if needed, provide a manual analysis of

the results. For studies where the study size is large, researchers can select a random sample

to validate it manually. In addition to carrying out empirical studies, the authors must be

conscious that the best method to produce reproducible studies is to include a replication

package that can be publicly available together with its publication (ideally for an indefinite

time). They also have to be aware that some characteristics in their studies, such as software

environments, might change, causing both programs and data to become obsolete. As a result,

a detailed description of the elements, methods, and software used during the study is also

valuable.

7.2.2 Discussion of the Theoretical Model

Chapter 5 addresses the issue of identifying changes that introduced bugs. Currently, the

lion’s share of the work is based on methods and techniques which rely on the inherently

flawed assumption that the lines of code that have been modified to fix a bug are also the

lines that previously introduced the bug. While the questionable nature of this assumption is

known, this thesis makes an important contribution by detailing a new model to explain how

bugs appear in software products. This proposed model does not blame all identified changes

as BICs, but instead, it searches for when bugs manifest themselves for the first time, and

how that can be determined by running a test.

After analyzing 120 bug reports in this study, we noticed that determining where, when

and how a bug is introduced is not a trivial task. There are situations where many researchers

were involved to clarify the essence of the malfunction. In fact, it is in some cases difficult

to even determine whether a bug was present in the code at the time of a given commit’s

submission. For example, there are cases where the current automatic approaches are unable

to determine the point of introduction of a bug, as no previous commit can be identified. One
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of those cases is when the BFC only added new lines in the source code: in such case, there

is no way of identifying the previous commit as defined, since there is no previous commit

before the addition of lines. In this case, the description of the bug report as well as the

surrounding lines of the new additions in the BFC could clarify the reasons for the new lines

to fix the bug. For instance, whether the new lines were not included in some ancestor commit

causing the bug, or the new lines were included in the BFC to fix a bug related to satisfy the

evolution of requirements and characteristics of the project.

Thanks to the results of the SLR, the limitations, and problems that affect SZZ-based

algorithms when identifying the BICs were quantified. Thus, the proposed model integrates

these scenarios and is able to deal with them. An explanation of how the model can address

each of the limitations is given.

1. Identification of more than one previous commit: The model does not focus on identi-

fying the previous commit set of a BFC. It instead tests in all the ancestor snapshots of

the project the behavior or the functionality that was reported as a bug, to find the first

time that bug manifested itself in the software.

2. Scenarios when only new lines are used to fix the bug: The model does not look for

lines that have been modified or deleted to fix a bug. It instead considers all the ancestor

commit set to test when the malfunction manifested itself for the first time.

3. External changes or changes in the environment: The model can detect bugs caused by

changes in the environment or external changes by using a test that checks whether the

functionality that was fixed in the BFC, and detailed in the bug report, behaves correctly

in the ancestor snapshots. This means that the hypothetical test will pass or fail when

it is running into previous snapshots with the state of the new environment fixed in the

BFC. Thus, when the snapshots passes the TSB means that the environment or external

change was already implemented, while if the TSB fails means that in this snapshot the

new environment or external change was not implemented. In this scenario, the BIC

cannot be identified since any previous change introduced the bug. Consequently, the

malfunction was caused by something external to our project, and only the FFM can

be found.

4. Multiple modifications over a line: In our model, it does not matter how many times
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a line has been modified since it does not blame the last change as the BIC. The test

looks for the first time that the bug was introduced in the project.

5. Weak semantic level: As in the example above, the proposed model deals with the

semantic level of changes because it is not focused on identifying the last change; it

instead tests the behavior of the code.

6. Scenarios when a BFC fixed more than one bug: In these cases, our model can design a

specific test for each bug, looking for the first time that the test fails when testing each

bug.

7. Compatibility reasons: The model identifies the first time that the bug was manifested

in the source code using the TSB to identify the BIS.

8. Dormant bugs: The model identifies the first time that the bug was introduced into the

source code using the TSB. Thus, it does not matter how long the defect had been in

the project.

Many researchers have based their methods for locating BICs in the versions of the SZZ

algorithm or similar algorithms that lack the means to deal with these limitations. They

formulate heuristics that for example, remove the BFCs with only new lines to fix the bug

because they cannot track back these lines, or they remove longer BICs or older commits

because they are unlikely to be the BIC. Sometimes, the consequence may be mislead results

and lose accuracy when identifying BICs.

The SZZ is currently the best-known and easiest algorithm used to identify BICs. As a

result, some studies have used datasets to feed their bug prediction or classification models

with results obtained from the SZZ. Ray et al. that studied the naturalness of buggy code

[Rahman et al., 2014]. Massacci et al. evaluated most existing vulnerabilities of discovery

models on web browsers and took many datasets where at least the built-in used the SZZ

approach [Massacci and Nguyen, 2014]. Abreu et al. obtained a dataset using the SZZ and

studied how the frequency of communication between developers affects the fact to introduce

a bug in the source code [Abreu et al., 2009].

In general, with this new method it may be possible to distinguish between two relevant

moments given a BFC, the BIC and the FFM. The first moment does not always exist, because
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there could be external changes or the instance whereby the internal requirements could have

evolved which may have caused the failure. However, there is always a FFM which indicates

the first moment when the project manifests itself the bug. To obtain more accurate results in

areas such as bug prediction, bug categorization, and bug detection, the approaches used to

identify when a bug is introduced should distinguish between these two moments, the FFM

and the BIC. The empirical case of study states that the current state-of-the-art approaches

identify from 26% and up to 45% of “real” BIC (true positives). Thus, these results are

promising to start thinking about implementing new methods based on the theoretical model

proposed in this dissertation, or at least, to consider re-formulating correctly the definition

of bug introducing. The bug introduction process cannot be considered as a static problem;

the current methods need to be able to distinguish between buggy lines and clean lines at the

moment of their insertion. This dissertation has demonstrated that other external and internal

reasons rather than buggy lines are causing the failure of the systems and that it is not fair

to blame a change as the cause when in fact, it did not insert the error as it fulfilled with

the functionalities required, environments, necessities, and requirements of the project in that

moment. Although more lights have been given to the problem of emulating software faults

realistically, to achieve greater bug localization automation, a more concerted effort is needed

in testing to find ways or techniques to address the re-built problem and to build a test that

can be automated or partially automated to find the BIC or FFM.

7.2.3 Discussion of the Empirical Study Results

The empirical study of Chapter 6 supports the necessity of a new model to identify the

changes that introduced bugs as it is not always obvious how errors are introduced into the

source code with the current state-of-the-art approaches. This dissertation introduces a new

model that might solve this necessity in Chapter 5. Its implementation has been empirically

studied in Chapter 6, we have carried out a qualitative study on a set of bug reports to identify

whether a BIC exists and, in this case, to pinpoint where it was introduced given a BFC.

The identification of the lines that are responsible for inserting the error is a quite compli-

cated process. Out of 120 bug reports from the datasets of Nova and ElasticSearch, 116 bug

reports with their respective Bug-Fixing Commit were able to pass to the second stage. In

this second stage, researchers manually analyzed whether or not the changes identifies from
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the BFC introduced the bug. In both projects, the percentage of changes that introduced a

bug into the source code was higher than the others categories, with 79% of occurrence rate

in Nova and 91% in ElasticSearch. However, the percentage of BFC that were not caused

by introducing a BIC is more representative in Nova with 21% of occurrence rate, while in

ElasticSearch the 9% of the BFC did have a BIC. We hypothesize that a possible reason can

be attributed to the programming language. While Python is a dynamic language that can run

without compilation, Java is strictly typed and performs run-time checks, which may decrease

the category of BFC that were not induced by a BIC.

During the manual analysis, we discover some reasons which may explain why a BFC was

caused by the insertion of buggy lines. In Nova, the principal reason was the Co-evolution

Internal with a 42% occurrence rate, followed by 33% of the cases where bugs are in external

APIs. The third most frequent reason was the Co-evolution External, with a 17% occurrence

rate and finally, the less frequent reason was Compatibility with a 8% of the cases. On the

other hand, in ElasticSearch the percentages are equally distributed with a 40% occurrence

rate in Co-evolution Internal and Bug in External API, 20% of occurence in Co-evolution

Exteranal and bugs caused by the incompatibility of hardware and software were not found.

This anecdotal classification should be further investigated since it can help researchers to

identify different patterns, probably hidden, which can explain better how bugs are introduced

and manifested in the source code. It also does not claim that these categories can be extended

to other projects. We draw attention to the fact that there are other different reasons that cause

bugs, and it should be better studied to improve current classifications. To be noted that,

although this manual analysis was mostly conducted by the author of this dissertation, in case

of doubts, other researchers were involved to discuss and analyze the root cause of the bug. It

may be possible that some differences in judgment about the classification of the root cause

exist whether this study is replicated in the future. In fact, even if the location and time stamp

of a BIC are known, we need to (1) understand the bug and how to fix it in the case we have

indeed found the actual BIC, or (2) determine that what we assume to be the BIC, is in fact

not the BIC, but simply the FFM because the bug was not present at this moment.

After examining 120 bug reports in this study, we notified that attempting to agree on

the classification of the root causes of defects is a tedious and sometimes subjective process.

Thus, this dissertation suggests an initial classification, without trying to make any strong
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statement. From the results, it was observed that from 9% to 21% of the analyzed BFC were

not induced by a BIC. This results can be compared to the results obtained by Wan et al,

they defined a category for bugs caused by environmental and configuration issues as “En-

vironmental and configuration bugs correspond to the bugs that lie in third-party libraries,

underlying operating system, or non-code parts” and found that 11.42% of the reported bug

studies fall into this category [Wan et al., 2017]. Thus, our initial classification may help to

understand better the reasons why a BFC was not caused by a BIC.

This dissertation discusses a myriad of options in terms of what a BIC can and cannot be,

and also how an SZZ algorithm will fail, depending on the specific implementation/version

of the SZZ algorithm. An essential element of the empirical study is the “gold standard”,

which has the characterizations of BICs. The study was able to quantify the “real” number

of false positives, false negatives and true positives in the performance of the SZZ algorithm,

and as far as we know, nobody has attempted to calculate it before. According to the re-

sults presented in Chapter 6 Section 3.4, in the best scenario, the SZZ and SZZ-1 compute

55% and 35% of false positives in Nova with a F1-Score of 0.44 and 0.66 respectively. In

ElasticSearch, the number of false positive in SZZ and SZZ-1 61% and 34% with a F1-score

of 0.43 in both algorithms. These results may appear to be contradictory with the previous

results where ElasticSearch has a fewer percentage of bugs that were not introduced by BICs,

and it may cause a lower number of false positives than Nova. However, the reason why

ElasticSearch computes more false positives may be because the presence of BFC with a PC

set greater than 1 is higher than in Nova. Thus, it explains why the heuristics of the SZZ fail

more frequently, and almost in half of these cases. The assumption made about that the ear-

lier commit belongs to the PC set is the BIC is frequently wrong in these cases. When there

is a PC set with more than one pc, the SZZ algorithm makes heuristics to identify which

commit from the set is the BIC; in this case, the SZZ algorithm looks for the earlier commit

and blames it as the BIC. Another reason that explains why Nova computes higher recall than

ElasticSearch is the number of BFC with only new lines. This causes the number of false

negatives to increase since SZZ does not include these BFCs in their analysis.

Other studies such as [Kim et al., 2006c], [Williams and Spacco, 2008], and [da Costa et al., 2016]

also manually analyzed samples of SZZ data, although they reported much higher percent-

ages of correct SZZ results than this thesis. This is because these studies were not searching
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for the “gold standard”; they do not distinguish between BICs and FFMs, and they do not de-

fine what a bug is. As results, they do not contemplate other scenarios which exist and other

factors such as changes in external APIs or co-evolution changes. While this dissertation an-

alyzes the whole context of a BFC, these studies only focus in verifying the bug-fixing hunks,

thus they could omit changes in the API or changes due to the evolution of the code. On the

other hand, there is also the possibility that the specific projects selected in these studies had

a fewer percentage of false negatives due to different cases of bug introduction. This is one of

the reasons why we propose a further work to extend the analysis to a varied set of projects.

Our research provides empirical evidence in the assumption that the previous commit is

where the cause of a bug is located is not true for a significant fraction of bugs up to 25%

in the best scenario. SZZ-based algorithms cannot find the change that introduced the bug

mainly due to the impossibility to trace further some lines. Da Costa et al. studied the impact

of refactoring changes on different implementations of the SZZ and observed that 19.9% of

the bug-introducing lines changed in a BFC are related to refactoring changes, and 47.95%

of the bug-introducing lines contained equivalent changes, in both cases these algorithms fail

to identify the BIC as they cannot track further these lines.

In addition, the results also show that our proposed model, theoretically, fulfills with the

fundamental concern of identifying the BIC when it exists. The results also indicate that in

the best scenario, the use of SZZ presents a 54% of true positives. These results suggests

that the existing techniques based on the SZZ algorithm are generating several false positives

and should be improved or reformulated in order to consider all the limitations mentioned in

this dissertation. However, further investigation on the automation of the model needs to be

conducted, as well as further study on how external factors and the evolution of requirements

affect the manifestation of bugs in the projects.
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Conclusions and Future Research

This chapter recapitulates the initial research goals and contributions claimed in Chapter 1

and describes the main conclusions of this thesis. Furthermore, the future research work is

also detailed in section 8.2.

8.1 Conclusions

Software bugs are important information to understand the process of bug insertion and bug

manifestation. The complete understanding of bug insertion means to correctly identify

changes that introduced bugs in software products. This understanding needs to distinguish

between when a bug is inserted from when a bug is first manifested. Understanding how

bugs are inserted helps in different areas of software engineering such as bug prediction,

bug proneness, bug detection or software quality. Thus, this thesis covers the entire research

cycle of bug introduction: from investigation and identification of the shortcomings of the

state-of-the-art approaches to the design of a model, and its empirical application.

Specifically, in this dissertation we have observed that the basic distinction between the

bug introduction moment and the bug manifestation moment has not been adequately delin-

eated in the current literature of software bugs. As a consequence, a widely used algorithm

to identify where bugs are introduced suffers from severe reliability and credibility concerns

as shown in Chapter 4. In Chapter 4, we have performed a case study of ESE practice by

means of conducting a SLR on the use of the well-known SZZ algorithm. Our sample of

publications consists of 187 publications that make use of the SZZ algorithm, out of 458 pub-
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lications that cite the seminal paper. This SLR sheds some light on some of the problems that

ESE research faces when assumptions, as it is the case in SZZ, are made in research methods:

publications are primarily non-reproducible, limitations are only occasionally reported, im-

proved versions are seldom used and difficult to identify, and researchers prefer to use their

own enhancements.

Thus, to address these challenges, Chapter 5 presents a model to identify the changes

that introduced bugs in the system. The model includes an overview of the challenges of

bug introduction identification that can be used to define what is a bug and how practitioners

may identify when it was inserted by assuming that there exists a hypothetical test that can

check the correct behavior of the project in different snapshots. Chapter 5 also formulates

a comprehensive nomenclature to argue about bug introduction and formally describes the

theory of bug introduction. To our knowledge, this is the first study aiming to formulate a

nomenclature for the bug introduction process.

The application of the theoretical model into practice may be complicated without a full

automatization, however, Chapter 6 describes an empirical study where the model was ap-

plied in a manual process leading to identification of Bug-Introducing Commits (BICs). The

empirical study demonstrates the challenges and shortcomings of existing SZZ-based ap-

proaches and provides means of constructing a “golden standard” for their evaluation. It also

demonstrates, empirically, that the correct identification of changes that introduced bugs is far

from perfect and further research is needed because the results indicate that other factors such

as the internal evolution of the requirements or external changes cause that up to 9%-21% of

the bug were not introduced in the project.

To summarize, a plethora of research studies focus on helping practitioners to identify

bugs in software products by detecting, predicting and understanding them. However, we

have demonstrated that some bugs are not really inserted in the project, and hence this dis-

tinction is not accounted for in such studies. Moreover, when a change in the project inserted

the bug, the current techniques compute several false positives when attempting to identify it

because they make many assumptions. To deal with this problem we have quantified the lim-

itations of these techniques and we have provided a solution. This solution describes a new

model to determine when a change introduced an error and when the project manifested this

error for the first time. We demonstrated its accuracy over two software project and provide a
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framework to evaluate the different versions of the SZZ-based techniques. The contributions

of this dissertation open multiple directions for further research in several areas of software

engineering which are related to software bugs.

8.2 Future Work

After manually identifying the Bug-introducing commits (BIC) and the First-Failing Mo-

ments (FFM) using the criteria detailed in the proposed model, the next logical step is to

automatize the theory as much as possible in order to automatically find the BIC and FFM

given a Bug-Fixing Commit (BFC). As mentioned earlier, there will be some scenarios where

the Test-Signaling Bug (TSB) may be unable to implement due to reasons related to depen-

dencies and environments used at some previous point in the history of the project. Thus, as

future work, I would like to study the extent to which this occurs in an optimal project where

all the dependencies would be under control, where each one of the previous environments

of the project can be most likely replicated. We hope that the automation of the proposed

model is also interesting from a practical point of view, because it would provide software

projects with a valuable tool for better understanding what is a bug and how it is introduced,

and therefore design measures for mitigation.

Another future line is to select a bigger sample size to carry out a classification to study

the frequency with which a BFC presents a BIC depending on the bug report description and

the software change in the BFC. This study will provide us with more in-depth knowledge

on whether there are patterns that exist which have been hidden in the current literature. This

study could help to better design integration tests, to better identify real BICs or to check for

these cases.

Finally, another interesting future line concerns with the reproducibility and replicability

of previous studies based on the use of SZZ-like techniques in order to predict, detect and

classify bugs. There is a need for boosting reproducibility and replicability to investigate how

it should be addressed by the ESE community, this will help to ascertain the impact of this

thesis in other domains as well as the necessity of improving and better defining what is a

bug and how it can be located.
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Appendix A

Replicability of the Results

Some authors such as Shull et al. [Shull et al., 2008] and Basilli et al. [Basili et al., 1999]

have dealt with the task of Mining Software Repositories MSR. This is a complex task because

of the high amount of time spent, the necessity of developing some specific tools and the

management of datasets. Furthermore Robles [Robles, 2010] has raised some questions

related to this problem in the ESE.

In first place, there are several elements that may be of interest for reproducibility:

A.1 SLR

Original data source: The original data sources used along this thesis can be found in

http://gemarodri.github.io/Thesis-Gema.

Extraction methodology: The methodology is briefly detailed in Chapter 4, section 3.

While the scripts used can be also found at http://gemarodri.github.io/Thesis-Gema

Study parameters: The initial filter applied over the raw data set is detailed in Chapter 4,

Section 3.

Results dataset: The results can be found in Chapter 4. In addition, they are also available

at http://gemarodri.github.io/Thesis-Gema

Persistence: it is expected to have access to the website as long as GitHub exists.
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A.2 Empirical Study

Original data source: The original data sources used along this thesis can be found in

http://gemarodri.github.io/Thesis-Gema or along Chapter 6, Section 1.

Extraction methodology: The methodology is briefly detailed in Chapter 6, Section 2.

While the scripts created and needed can be found at http://gemarodri.github.

io/Thesis-Gema

Study parameters: The initial filter applied over the raw data set is detailed in Chapter 5,

Section1 and Section 2.

Results dataset: The results can be found in Chapter 6, Section 3. Furthermore, they are

also available at http://gemarodri.github.io/Thesis-Gema

Persistence: it is expected to have access to the website as long as GitHub exists.

To be noted, this thesis should change, if this happens, the last version of this thesis is

available at: http://gemarodri.github.io/Thesis-Gema.



Appendix B

Resumen en Castellano

B.1 Introducción

Los sistemas de software siempre han tenido errores, su búsqueda ha ocupado y ocupará gran

parte de las tareas diarias de los desarrolladores de software. Los sistemas de software se en-

cuentran en continua evolución con cambios continuos en el código fuente, y además se han

vuelto más complejos a lo largo del tiempo, ya que necesitan manejar una cantidad significa-

tiva de datos, integrar módulos de terceros y ejecutar multiplataformas. Como consecuencia,

desarrollar y probar sistemas de software es actualmente un gran desafı́o para los ingenieros

de software.

Por lo tanto, la aparición de defectos es inevitable, aunque es común usar técnicas para

detectarlos y prevenirlos con anterioridad, la tasa promedio de defectos arreglados en la

industria cuando se trata de crear software es de aproximadamente de 1 a 25 errores por

cada 1,000 lı́neas de código [McConnell, 2004]. Esto revela la necesidad de comprender

cómo se introducen los errores en el código fuente para minimizar la posibilidad de que

se introduzcan en los sistemas de software. Esto hace que sea especialmente importante

comprender los procesos que llevan a la introducción de errores, la manifiestación de er-

rores y a su posterior arreglo. La mejor práctica para entender cómo se insertan los er-

rores en el código fuente se basa en el estudio de sus informes, causas y soluciones. Es-

pecı́ficamente, el estudio de los cambios que arreglan un error es un interesante ejercicio

que permite a los investigadores comprender la importancia de entender como se intro-

ducen los errores en diferentes áreas de Ingenierı́a de Software. Por ejemplo, determinar
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por qué y cómo se introduce un error puede ayudar a identificar otros posibles cambios que

introducen errores [Śliwerski et al., 2005b], [Kim et al., 2006c], [Zimmermann et al., 2006],

[Thung et al., 2013], [Sinha et al., 2010]; puede ayudar a descubrir patrones de introducción

de errores que podrı́an conducir al descubrimiento de métodos para evitarlos [Nagappan et al., 2006],

[Zimmermann et al., 2007], [Hassan, 2009], [Hassan and Holt, 2005], [Kim et al., 2007]; puede

ayudar a identificar quién es el responsable de insertar el error, que tiene el potencial de

ayudar en el autoaprendizaje y los procesos de evaluación por pares [Izquierdo et al., 2011],

[da Costa et al., 2014], [Ell, 2013]; puede ayudar a comprender cuánto tiempo está presente

un error en el código, lo que permite la evaluación de calidad [Chen et al., 2014], [Weiss et al., 2007],

y ası́ sucesivamente. Debido a estas razones, este campo de estudio ha estado activo durante

las últimas décadas.

Hay mucha información sobre cómo se informan y se gestionan errores en los sistemas

de seguimiento de errores, como Bugzilla, Launchpad o Jira. Esta información proporciona

una descripción textual sobre los sı́ntomas del error, ası́ como los medios para reproducirlos

o enumerar los módulos afectados por el error. Esta información se puede vincular al sistema

de código fuente que proporciona el tratamiento mediante cambios en el código fuente para

corregir el error.

Aunque hay mucha información disponible, realmente encontrar cuándo se introducen

los errores es difı́cil, hasta el punto de que no está claro cómo definir “ Cuándo ” que se

introduzca un error. El término, “ error ” no se encuentra claramente definido, por lo que

los investigadores simplemente están adoptando suposiciones actuales que se encuentran pre-

sentes en la literatura. Estas suposiciones establecen que las lı́neas modificadas para corregir

el error probablemente sean la causa de dicho error.

Sin comprender que significa tener un error en el sistema y cómo se introduce, es difı́cil

desarrollar un enfoque exitoso para identificar cuándo se inserta un error en el software. Es

particularmente importante aclarar que nuestra definición de error considera que un error solo

se introduce en un sistema cuando se introducen lı́neas defectuosas en el código fuente. Y el

momento en que se inserta el error se debe distinguir del momento en que un sistema mani-

fiesta el error por primera vez. Aunque ambos momentos pueden ser iguales, el momento de

la introducción del error se puede identificar mediante el uso de una prueba de test hipotética

que verifica si el código en el momento de su escritura presenta los sı́ntomas descritos en el
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informe de error, por tanto:

• Cuando falla la prueba, significa que las lı́neas contenı́an errores en este momento, y

podemos estar seguros de que el error se insertó en el momento en que se insertaron las

lı́neas.

• Cuando pasa la prueba, significa que las lı́neas estaban limpias en este momento y que

en ese momento no hubo un momento de introducción de errores. Esto se debe a que

un sistema tiene diferentes necesidades en diferentes puntos a lo largo del tiempo y

los requisitos del sistema cambian y es posible que no se administren adecuadamente;

por ejemplo, una lı́nea limpia insertada en el momento A puede no causar la falla del

sistema, pero cuando el sistema alcanza el momento B, la lı́nea puede desencadenar el

error que causa la falla del sistema. Esto es posible porque el sistema usa dependencias

externas que habrán cambiado entre el momento A y B. Otra posible explicación serı́a

que alguna biblioteca externa contiene un error que se insertó en el momento B. Una

tercera explicación serı́a debido a la evolución del sistema que provocó cambios en

otras partes del código, afectando ası́ al código fuente en el momento al alcanzar el

momento B.

Además, otros factores también complican el desarrollo de un enfoque exitoso para iden-

tificar el primer momento de falla del sistema. Por ejemplo, cuando varias modificaciones

sobre la misma lı́nea podrı́an encubrir la verdadera evolución de una lı́nea de código, ocul-

tando ası́ la causa del error [Servant and Jones, 2017] o cuando solo hay nuevas adiciones de

lı́neas para arreglar el error [da Costa et al., 2016]. Por otra parte, los enfoques pueden dis-

minuir la precisión cuando los cambios que se arreglan no son modificaciones no esenciales

[Herzig and Zeller, 2013] o cuando un cambio no está relacionado con las lı́neas del código

que solucionó el error [German et al., 2009].

En la actualidad, muchos investigadores solo han realizado estudios para identificar el

cambio que insertó el error a través de tracear las lı́neas modificadas que corrigierion el error.

Sin embargo, este enfoque es ineficaz respondiendo a preguntas relevantes como son “¿qué

causó el error? ” y “¿esta lı́nea era errónea en el momento de su inserción? ”. Porque hasta

el momento, no se ha encontrdado ningún modelo significativo que pueda validar si la lı́nea

identificada, por uno de los métodos actuales, contenı́a el error cuando se insertó en el código
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fuente.

Para investigar y comprender mejor cómo aparecen los errores en los productos de soft-

ware, esta tesis presenta un modelo que define el cambio de código que introdujo un error.

Este modelo también establece la distinción necesaria entre el momento de introducción

del error y la primera vez que el error se manifesta en el sistema. Estos momentos no

solo se enfocan en estudiar el tratamiento, sino que también analizan los sı́ntomas. Sigu-

iendo la evolución de las lı́neas que se han cambiado para corregir el error, el contexto y

la historia del error puede ser más fácil de entender, y por lo tanto es teóricamente posi-

ble descubrir si las lı́neas modificadas para corregir el error introdujeron el error o por el

contrario, para confirmar que existen otras razones diferentes a la introducción de lı́neas

erróneas que provocaron la aparición del error en el sistema. El conocimiento de esta in-

formación puede ser muy útil en muchos campos de la ingenierı́a de software. Por ejem-

plo, al calcular varias métricas, como la experiencia del autor y su actividad en el proyecto

[Izquierdo et al., 2011], [Izquierdo-Cortázar et al., 2012]. Además, permite mejorar técnicas

avanzadas que aprovechan dicha información para aprender patrones de estos cambios, para

motivar el diseño y desarrollo de mejores mecanismos [Harris et al., 2010], o para ayudar a

automatizar predictores de errores que estiman la probabilidad de que dado un cambio, éste

inserte errores [Rao and Kak, 2011], [Thung et al., 2012], [Zimmermann et al., 2007].

B.2 Antecedentes

En la literatura existen dos corrientes diferenciadas sobre el estudio de las causas potenciales

que hacen que los desarrolladores introduzcan los errores. Por un lado, existen técnicas que

se basan en el estudio de los cambios que arreglan un error, especı́ficamente, identificando las

lı́neas que han sido modificadas para encontrar que cambio previo las introdujo. Sin embargo,

las otras técnicas usadas por los investigadores se basan en el análisis de trazas en el código

fuente, es decir, estos métodos analizan la asociación entre los fallos de un programa y la

ejecución de alguno de los elementos de un programa.

A continuación se describe una breve introducción al estado del arte actual. En el Capı́tulo 2

se realiza una descripción más detallada.
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B.2.1 Siembra del error

B.2.2 Identificar el cambio que arregló e error

Ness y Ngo fueron los primeros en estudiar los cambios que podı́an introducir errores, para

ello usaron una búsqueda simple lineary binaria, que tenı́a como propósito aislar el cam-

bio que provocó el arreglo aplicando cambios cronológicos al programa hasta que la version

arreglada presentase el mismo comportamiento erróneo que que la siguiente versión del pro-

grama [Ness and Ngo, 1997]. Una de las limitaciones de esta técnica se producı́a cuando un

conjunto de cambios provocaba el error, para solventar esta limitacioón, Zeller propuso la

automatización de la técnica delta debugging, esta técnica determina el mı́nimo conjunto de

cambios que inducen a arreglos [Zeller, 1999].

Purushothaman y Perry midieron la probabilidad, menos del 4%, de que un cambio

pequeño introdujese errores, nombraron a estos tipos de cambios como dependencias, que

son cambios en las lı́neas de código que fueron cambiadas por un cambio previo, asumiendo

que si el cambio posterior en esas lı́neas era para arreglar un error, entonces quien lo introdujo

fue el cambio previo, ya que era erróneo [Purushothaman and Perry, 2004]

Cuando existe un cambio que arregló el error (BFC): Śliwersky et al. describió como

identificar este tipo de cambios en proyectos que usaban sistemas de versión de archivos.

Además propusieron el algoritmo SZZ, este algoritmo es uno de los más usados en la literatura

actual y se basa en identificar los cambios que arreglan errores para analizar las lı́neas que

han sido modificadas o eliminadas, asumiendo que el último cambio realizado en esas lı́neas

antes del arreglo fue el cambio que introdujo el error [Śliwerski et al., 2005b].

La popularidad en el uso de este algoritmo, provocó que algunos artı́culos estudiasen

como mitigar las limitaciones que presentaba el SZZ. Kim et al. sugirió una nueva im-

plementación del SZZ que se basaba en la técnica de annotation graph para identificar

las lı́neas que habı́an sido afectadas por el cambio que arregló el error. Además, en este

artı́culo los autores mejoraron la técnica eliminando del análisis algunos casos como mod-

ificaciones realizadas por el BFC en lı́neas en blanco, en los comentarios o cambios del

formato [Kim et al., 2006c]. Por otro lado, Williams y Spacco propusieron una nueva versión

del algoritmo SZZ. Esta versión usa diferentes pesos (weights) para mapear la evolución de
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una lı́nea. Además, esta técnica también ignora los comentarios en blanco y los cambios

de formato en el código fuente [Williams and Spacco, 2008]. Sin embargo, a pesar de es-

tas mejoras, el algoritmo seguı́a teniendo limitaciones y seguı́a identificando erróneamente

cambios que no causaban errores como los cambios que provocaron el posterior arreglo. Por

ese motivo, Da Costa et al. crearon un marco para eliminar del análisis los cambios poco

probables de introducir el errores. Este marco se basa en una serie de heurı́sticos como las

fechas en las que los supuestos cambios que provocaron el error fueron realizados, las fechas

en las que los errores fueron reportados en el sistema, etc [da Costa et al., 2016].

Cuando no existe un cambio que arregló el error: La localización de errores basada

en espectro es una técnica usada para identificar el origen del fallo. Reps et al. usa ésta

técnica, cuya entrada es un dos conjuntos de rangos, para ejecuciones exitosas y fallidas, y

produce candidatos (lı́neas, métodos, bloques. . . ) que explica las posibles razones del fallo

[Reps et al., 1997]. Abreu et al. investigó la precisión de diagnóstico en la localización de

errores como una función de varios parámetros. Sus resultados indicaron que el rendimiento

superior de un coeficiente particular es en gran parte independiente del diseño del caso de

prueba [Abreu et al., 2007].

Otra de las técnicas que se usa para localizar el cambio que introdujo el error se denomina

el vecino más cercano, en inglés conocido como Nearest Neighbor. Renieres y Reiss usaron

esta técnica para localizar el fallo [Renieres and Reiss, 2003]. La técnica tiene dos partes

principales: En primer lugar, selecciona una única ejecución fallida y después, calcula la eje-

cución pasada con la mayor cobertura de código similar. En segundo lugar, crea el conjunto

de todas las sentencias que se ejecutan en la ejecución fallida pero no en la pasada ejecución.

Zeller y Hildebrandt desarrollaron por primera vez el algoritmo de Depuración Delta,

más conocido en Inglés como el Delta Debugging algorithm, que compara los estados de

fallo y éxito de una ejecución del programa, y usa la búsqueda binaria para localizar causa

del fallo [Zeller and Hildebrandt, 2002]. Desp’̆es, Gupta et al. combinó el Delta Debug-

ging con la técnica de rebanamiento estático para identificar el conjunto de declaraciones que

probablemente contengan código defectuoso [Gupta et al., 2005]. Finalmete, Cleve y Zeller

[Cleve and Zeller, 2005] describieron y usaron la técnica de transiciones de causa Cause

Transitions para comparala con el Nearest-Neighbor. Sus resultados sugieren que, bajo el
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mismo conjunto de sujetos, se comporta mejor la técnica de Cause Transitions.

B.2.3 El uso del Algorithmo SZZ:

Sin tratar de ser exhaustivos, en esta sección ofrecemos una serie de artı́culos donde los

autores han usado el algoritmo SZZ para diferentes fines. A continuación se muestran cinco

diferentes categorı́as dependiendo del propósito del artı́culo en el que se usó el SZZ.

Prediccioón de Errores Feng et al. usaron el SZZ para recolectar datos defectuosos y

construir un modelo de predicción de errores universal [Zhang et al., 2014]. Jiang et al.

propuso una nueva técnica para predecir errores en futuros datos, esta técnica produce un

modelo personalizado para cada desarrollador [Jiang et al., 2013]. Hata et al. desarrollo

un sistema de control de versiones detallado para Java, con el finde llevar a cabo predic-

ciones mas exhaustivas. Los autores coleccionaban los módulos erróneos usando el algo-

ritmo SZZ [Hata et al., 2012]. Kim et al. analizó la historia de versiones de siete proyec-

tos para predecir los ficheros y entidades más propensos a errores [Kim et al., 2007]. Zim-

mermann et al., también usó el algoritmo para predecir errores en grandes sistemas como

Eclipse [Zimmermann et al., 2007]. Nagapan et al. usó el SZZ para predecir la probabilidad

nuevas entidades defectuosas tras la distribución de la nueva versión del software [Nagappan et al., 2006].

Yang et al. utilizaron el algoritmo SZZ para estudiar la probabilidad de que un cambio que

arregló un error, a su vez introdujese otro error en el futuro [Yang et al., 2014a]. Rosen et

al. desarrolló una herramienta basada en el estudio del algoritmo SZZ que identifica y

predice los cambios más peligrosos en el software, ya que pueden provocar errores en el

futuro [Rosen et al., 2015]. Kamei et al. introdujeron el concepto just-in-time (JIT) para

asegurar una mayor calidad del software, los autores usaron este concepto para construir un

modelo que predice si un cambio es probable que introduzca errores [Kamei et al., 2013].

Clasificación de errores Pan et al. usa varias métricas obtenidas aplicando la técnica del

“slicing”1 para clasificar cambios como erróneos o libres de error, los cambios erróneos son

identificados usando el SZZ [Pan et al., 2006]. Kim et al. estudió cómo clasificar los cam-

1slicing hace referencia a cada una de las “rebanadas” del software, esta técnica es usada para identificar

todo el código fuente de un programa que puede afectar de algún modo el valor de una variable dada.
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bios en archivos como defectuosos o libre de errores usando las caracterı́sticas de los cam-

bios realizados en el código fuente para arreglar el error [Kim et al., 2008]. Thomas et al.

introdujeron un marco diseñado para combinar múltiple configuraciones de clasificadores,

mejorando de esta manera el rendimiento del mejor clasificador [Thomas et al., 2013]. Fer-

zund et al. presentaron una técnica para clasificar los cambios realizados en el software como

libre de errores o erróneos, usaban el SZZ para identificar de los trozos de código que fueron

modificados anteriormente y que introdujeron errores [Ferzund et al., 2009]. Kim y Ernst

propusieron un algoritmo de priorización de alertas basado en la historia de control de ver-

siones de un proyecto para ayudar a mejorar la priorización de herramientas de búsqueda de

errores. Este algoritmo se basa en SZZ para identificar lı́neas de archivos relacionadas con

errores [Kim and Ernst, 2007].

Localizacion de errores Asaduzzaman et al. usaron el algoritmo SZZ en Android para

identificar los cambios que introdujeron errores para después, usar esa información y buscar

problemas de mantenibilidad del proyecto [Asaduzzaman et al., 2012]. Schröter et al. con-

struyeron un conjunto de datos para el proyecto Eclipse que contiene información sobre los

cambios que introdujeron errores y los cambios que arreglaron esos errores [Schröter et al., 2006].

Kim et al. desarrollaron una herramienta para encontrar fallas usando la memoria de los ar-

reglos de errores, este método se centra en el conocimiento sobre los cambios que arreglaron

los errores. La herramienta usa análisis estadı́stico para aprender patrones de error especı́ficos

de un proyecto mediante el análisis de la historia de un proyecto para luego sugerir correc-

ciones [Kim et al., 2006a]. Wen et al. propusieron otra herramienta para localizar errores

basada en la recuperación de información y utiliza el algoritmo SZZ para extraer los cambios

que introdujeron errores y evaluar de este modo la herramienta [Wen et al., 2016].

Entender la Evolución del Software Kim y Whitehead analizaron los proyectos ArgoUML

y PostgresSQL para calcular el tiempo que tarda un error en ser arreglado después de haber

sido introducido en el código fuente [Kim and Whitehead Jr, 2006]. También, Kim et al. es-

tudió las propiedaddes y la evolución de los patrones de cambios realizados en siete diferentes

sistemas de software escritos en C, usaban el SZZ para identificar los cambios que introdu-

jeron errores [Kim et al., 2006b]. Eyolfson usa el SZZ para estudiar si el momento del dı́a en
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el que se introduce un cambio y la experiencia del desarrollado que lo introduce, afecta a la

probabilidad de introducir más errores en el código [Kamei et al., 2010]. Izquierdo et al. usa

el algoritmo SZZ algorithm para estudiar si los desarrolladores arreglan los errores que han

introducido [Izquierdo et al., 2011], además, los autores también usan este algoritmo para es-

tudiar la relación entre la experiencia de los desarrolladores y la introducción de errores en

la comunidad de Mozilla [Izquierdo-Cortázar et al., 2012]. Rahman y Devanbu estudian los

factores que tienen más impactyo en la calidad del software, como la propiedad del código,

la experiencia, la estructura organizacional y la distribución geográfica. En este estudio, el

algoritmo SZZ se usó para identificar las lı́neas de código asociadas con los cambios que

introdujeron los errores [Rahman and Devanbu, 2011].

Estudios Empı́ricos Nguyen y Fabio Massacci realizaron un estudio para validad la confi-

abilidad de los datos de la versión vulnerable de NVD. Los autores usaron el algoritmo SZZ

para identificar el código vulnerable responsable de la vulnerabilidad [Nguyen and Massacci, 2013].

Bavota et al. estudiaron empı́ricamente en qué medida las actividades de refactorización in-

trodujeron errores en tres sistemas que usaban Java como lenguaje de programación [Bavota et al., 2012].

Kamei et al. utilizaron el algoritmo SZZ para revisar los modelos de predicción de errores en

la literatura [Kamei et al., 2010]. Fukushima et al. evaluó empı́ricamente el rendimiento de

los modelos de predicción de errores basados en el concepto Just-In-Time [Fukushima et al., 2014].

B.3 Modelo teórico Propuesto para localizar errores

Esta seccón presenta la definición de un modelo para identificar inequı́vocamente los cam-

bios que introducen errores (BIC). Éste modelo identifica un conjunto de cambios que intro-

ducen errores y que se corresponden con un conjunto de cambios que arreglan errores (BFC).

Además, este modelo incluye definiciones precisas de lo que significa un BFC y un BIC,

definiciones basadas en la suposición de que existe una prueba hipotética con una cobertura

de test perfecta y que podrı́a ejecutarse indefinidamente a lo largo de la historia del código

fuente del proyecto. El modelo propuesto devuelve verdadero o falso dependiendo de si el er-

ror estuvo presente o no en un momento especı́fico del proyecto, de tal manera que podemos

usar la prueba o test para comprobar si una determinada funcionalidad esta presente y se com-
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porta de acuerdo a las expectativas en cada momento de la historia del proyecto. Por primera

vez, un modelo contempla diferentes escenarios que han sido excluidos en la literatura actual,

por ejemplo, los BFC que presentan solamente nuevas lineas añadidas, o la distinción entre

el momento de inserción y el momento de manifestación de un error.

El objetivo principal para describir este nuevo modelo es ampliar las técnicas actuales

usadas en la lı́teratura y garantizar de esta forma que las cambios identificados como respon-

sables de introducir el error en el código fuente en realidad introdujeron el error en algún mo-

mento de la historia del proyecto. Finalmente, éste modelo se usará como un marco teórico

para la evalución del rendimiento de otras técnicas en la identificación de BIC, ası́ como para

comparar la efectividad entre los diferentes algoritmos, ya que junto con el modelo prop-

uesto se define un “estándar de oro” en que se identifican inequı́vocamente que cambios son

BIC en un proyecto. Antes de explicar en detalle la teorı́a del modelo propuesto, se requiere

definir algunos conceptos que sob utilizados para explicar el modelo.

B.3.1 Definiciones:

Buscar el origen del error es una tarea compleja que implica una gran variedad de elementos

y conjuntos individuales en su búsqueda. De tal manera que, encontramos la necesidad de

formular una terminologı́a que es una de las partes de valor en esta tesis. Esta terminologı́a se

puede aplicar a los sistemas modernos de administración de código fuente. La terminologı́a

define cada elemento y cada conjunto de elementos que tienen lugar durante el análisis para la

identificación del BIC a partir de un BFC. Para evitar confusiones, a continuación se definen

los conceptos con los que vamos a trabajar:

Cambio atómico (at): Es una operación que aplica un conjunto de cambios distintos como

una operación única. En esta tesis, el cambio atómico se refiere a un cambio mı́nimo de una

lı́nea.

Cambio atómico anterior: Dado un cambio atómico at, nos referimos a at′ como la última

modificación que cambió la lı́nea l de un fichero f . Por lo tanto, la relación de precedencia

entre un cambio atómico y su cambio atómico previo es la siguiente:

at′ → at
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Commit (c): Un cambio observable que registra uno o más cambios atómicos en el código

fuente de un sistema de software. Estos cambios generalmente se resumen en un parche que

es un conjunto de lı́neas que un desarrollador agrega, modifica o elimina en el código fuente.

Los commits actualizacian la versión actual del directorio árbol.

Lı́neas modificadas: Por definición, una confirmación puede cambiar cero2 o más lı́neas

de código; y nos referimos a ellas como lı́neas cambiadas de un commit y las denotamos

como LC(c).

Precedencia entre commits: Relación entre cambios atómicos de un commit con sus cam-

bios atómicos previos en un fichero f , dónde el commit previo de un commit es el cambio

atómicos anterior de un conjunto de cambios atómicos. Nos referimos a esta precedencia

entre commits como commit previo(pc) de una commit en f y la designaremos como:

pc′(c)→ pc(c)

paragraph textbf Conjunto de commits previos: Conjunto que incluye los diferentes commits

previos a un commit. Formalmente:

PCS(c) =
⋃

pc′(c)

Commit Descendiente: Dado un commit c y un fichero f , una confirmación descendiente

de c es una de las confirmaciones que pertenece a la cadena de commits de precedencia de c

en f , nos referiremos a él como dc.

Set de Commits Descendientes: Conjunto de commits descendientes para un commit de-

terminado; nos referimos a él como DCS(c). Debemos tener en cuenta que set de commits

previos contiene solo los commit previos a un commit, mientras que el set commits descendi-

entes contiene todos los commits que han modificado, de alguna manera, las lı́neas cambiadas

en c durante toda la historia del fichero f .

Ancestor Commit: Es cualquiera de los commits anteriores a un commit determinado, nos

referiremos a él como ac.
2se cambian cero lı́neas cuando solo se agregan nuevas lı́neas en un commit.
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Conjunto de Ancestor Commits: Conjunto de los ancestor commits de un commit deter-

minado; lo llamamos ACS(c). Debemos tener en cuenta que a partir de un commit especı́fico

del repositorio, el conjunto de ancestor commits contiene todos los commits de ese reposito-

rio.

Inmediatamente Ancestor Commit: Es el commit inmediatamente anterior a un commit

determinado en el conjunto de ancestor commits, nos referiremos a él como iac.

Instantánea o Snapshot: Representa el estado completo del proyecto en algún momento

de la historia. Usando git como ejemplo, dado un commit c, la instantánea correspondiente

serı́a el estado del repositorio después de escribir en la terminal de comandos “git checkout c”.

La evolución del software se puede entender como una secuencia de instantáneas, cada una

correspondiente a un commit, en el orden mostrado por “ git log” (orden de confirmaciones

en la rama considerada).

Commit que arregla un error (BFC): Commit dónde se solucionó un error. Dado un

error b se puede requerir uno o más commits para reparar el error, definimos el conjunto de

commits que arreglan un error como el siguiente conjunto: BFC(b). En general, esperamos

que este conjunto sea único, es decir, que un error se corrija en un único commit, a pesar

de que se pueden necesitar varios commits para corregir un error. Además, un commit que

corrige un error solo existe si realmente es un error en el momento de la corrección, porque

para descubrir qué cambio introdujo el error, es necesario que el error analizado sea realmente

un error.

Snapshot de la solución del error (BFS): instantánea del código correspondiente a un

BFC.

Test Signaling a Bug (TSB): Una prueba utilizada para indicar que hay un error presente.

Se define como una prueba hipotética, que se puede ejecutar en cualquier instantánea del

código, devolviendo True si la prueba pasa, lo que significa que la instantánea no contiene el

error, y False si la prueba no pasa, lo que significa que la instantánea contiene el error.
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Prueba que falla en la snapshot (T-S): instantánea para la cuál el TSB falla.

Prueba que pasa en la snapshot (T + S): instantánea por la cuál el TSB pasa.

Snapshot introductor de errores (BIS): Primera instantánea en la secuencia continua más

larga de T-S, que termina justo antes de BFS. Es decir, hay una secuencia continua de in-

stantáneas para las que falla la prueba, comenzando en el BIS y terminando justo antes del

BFS. Como la prueba falla desde la instantánea hasta la corrección, podemos saber que la

prueba falló en esa secuencia y, dado que esta es la primera instantánea con el fallo de la

prueba, podemos decir que ésta es la primera instantánea “con el error presente”.

Cambio que introdujo el error (BIC): Un commit especı́fico perteneciente al BIS que

introdujo la(s) lı́nea(s) errónea(s) en el momento de su inserción, y el error se propagó en el

sistema a través de los commits posteriores hasta que el BFC arregló el error.

First Failing Moment (FFM): El primer commit correspondiente al BIS que manifiestó el

error pero que no introdujo lı́neas erróneas en el momento de su inserción.

B.3.2 Explicación del modelo propuesto:

Con demasiada frecuencia, cuando se analizan proyectos, los investigadores usan git como

sistema de gestiı́n de código fuente (SCM). El SCM registra cambios observables en un

archivo o conjunto de archivos. Los cambios observables son alteraciones de archivo(s) cau-

sados por adiciones, eliminaciones o modificaciones de una o más lı́neas en el código fuente.

Gracias al SCM, los investigadores pueden rastrear de forma manual o automática la elim-

inación y modificación de lı́neas desde un momento especı́fico hasta su origen, y también

pueden identificar qué lı́neas son nuevas adiciones en cada commit. Navegando hacia atrás

en la relación entre las lı́neas alteradas de cada cambio observable y su cambio anterior, se

puede construir un árbol de precedencia de cambios observables o árbol genealógico. La

figura B.1 muestra un ejemplo del cambio observable i realizado en un ficherp f que corrigió

el error b. Rastreando cada lı́nea modificada o eliminada de f , podemos dibujar el árbol ge-

nealógico de las lı́neas involucradas en i. Es importante saber que las nuevas lı́neas añadidas
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no se pueden rastrear, pero se tiene en cuenta en el modelo. Los recuadros negros representan

los diferentes commits, los puntos representan un conjunto de solo nuevas lı́neas, las flechas

muestran la precedencia entre commits, y el color de las lı́neas se relaciona con la acción

realizada, eliminar (rojo), añadir (verde) o modificar (negro).

Usando la terminologı́a definida anteriormente, nos vamos a referir al cambio observable

i como el BFC. A partir de las lı́neas cambiadas en el BFC, LC(BFC), podrı́amos dibujar

su árbol genealógico en el que, gracias a la precedencia entre los commits, hay una relación

genealógica. Visualmente a partir de esta relación, distinguimos entre commits de la primera

generación (i-1a, i-1b, i-1c), segunda generación (i-2a, i-2b, i-2c, i -2d), y tercera generación

(i-3a) del BFC. Por extensión, el conjunto de commits previos del BFC es la primera gen-

eración de commits y el conjunto de commits descendientes es la primera, segunda y tercera

generación de los commits.

PCS(BFC) = (i− 1a, i− 1b, i− 1c)

DCS(BFC) = (i− 1a, i− 1b, i− 1c), (i− 2a, i− 2b, i− 2c, i− 2d), (i− 3a)

Cuando se observan los commits en la rama master de un repositorio de proyectos, es

posible que no se tenga un claro acceso visual al árbol genealógico de una commit determi-

nada, pero se tiene una visión aplanada de todas los ancestor commits de un commit determi-

nado. En esta visión plana, los commits van precedidos por otros cambios que conforman una

visión linearde precedencia, donde se pueden encontrar los commits genealógicos. Un con-

cepto importante a tener en cuenta, es que esta precedencia no está establecida por fechas,

sino por versiones anteriores en el SCM. Esto ocurre debido a la forma en que funciona

un sistema descentralizado de gestión de código fuente (DSCM). Bird et al. Explicó cómo

podrı́an divergir los repositorios locales de dos desarrolladores que colaboran a la vez en un

proyecto que usa git, lo que hace que cada repositorio contenga commits que pueden no están

presentes en el otro repositorio. Por lo tanto, en el momento de combinar ambos repositorios

locales, el usuario puede seleccionar entre muchas opciones relacionadas con la secuencia

de commits, tales como rebase, merge, remove, squash, etc. Estas acciones pueden alterar

el orden natural de los commits, lo que las inhibe de ser ordenados cronológicamente en el

tiempo [Bird et al., 2009b]. Continuando con el ejemplo anterior, La Figura B.2 muestra la

visión linearde precedencia del commit i en la rama master del repositorio de un proyecto.
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Figure B.1: Árbol genealógico del cambio observable i, cada confirmación muestra una

relación de precedencia con sus compromisos descendentes.

Los commits están representados por cı́rculos, y los cambios que pertenecen al árbol ge-

nealógico de i se pueden encontrar en naranja si son pc o en azul o si son dc; los commit

restantes son los ac dónde el commit anterior al i es el inmediatamente ancestor commit iac.

El conjunto de ACS fueron añadidos al proyecto; sin embargo, no tienen una relación de

precedencia con las lı́neas modificadas en i y no aparecen representados en la figura.

Para aquellos que están familiarizados con git, podemos comparar la Figura B.1 con el

resultado obtenido tras usar git blame en las lı́neas modificadas en BFC y la Figura B.2 se

correspoderı́a con el resultado de usar git log en una confirmación especı́fica de la rama

principal de un repositorio en un proyecto.

Desde un punto de vista objetivo, no es importante saber CUÁNDO se insertó el error en

el tiempo, sino QUÉ lo insertó. Esto se debe a que después de insertar las lı́neas erróneas

en commit previo o una ancestral commit de un BFC, el error permanece en el sistema y,

además, se propaga a través de cada cambio nuevo en el fichero. Por lo tanto, determinar

el primer cambio que manifiesta el error implica navegar en las lı́neas del árbol genealógico



148 APPENDIX B. RESUMEN EN CASTELLANO

Figure B.2: Visión de precedencia linearen la rama master del commit que arregla el error.

Los commits coloreados pertenecen a PCS(i) (naranja) y DCSi (azul), el commit negro es

BFC y el commit gris es el commit inicial del proyecto. Se debe tener en cuenta que los

commits no se ordenan en orden cronológico porque no asumimos una prioridad establecida

por fechas.

y desde un punto de vista teórico, habrá un cambio en la. visión linearde precedencia que

manifiesta el error en el sistema por primera vez. Este cambio será el primer cambio que falla

y se denominará FFM. Además, el FFM puede ser el cambio que introdujo el error en función

de si la(s) lı́nea(s) insertadas contenı́an el error. Cuando ningún cambio insertó la(s) lı́nea(s)

erróneamente, no se puede encontrar el BIC y como resultado, solo se puede identificar el

FFM para explicar en que commit falló por primera vez el sistema. Algunos ejemplos son

cuando cambios (externo/interno) afectaron de alguna manera las lı́nea(s) del código fuente

causándo el error del sistema y su manifestación.

B.4 Como encontrar el BIC y el FFM

Para descubrir el cambio que introdujo el error con la mayor precisión posible, se recomienda

hacerlo manualmente rastreando cada lı́nea modificada del código fuente de un BFC hasta

encontrar el momento donde se insertó el error. Es necesario utilizar la información del

sistema de revisión de código y del sistema de control de versiones para asegurarse que en

ese momento se insertó el error. Si en base a esta información se observa que en ese momento

el commit insertó la(s) lı́nea(s) que contenı́an el error, el cambio se considera un BIC. Por el

contrario, si la información recopilada explica que hubo otro cambio que causó el error en el

sistema como por ejemplo un cambio en el entorno o en el contexto, el cambio no se considera

un BIC, si no que se considera un FFM.



B.4. COMO ENCONTRAR EL BIC Y EL FFM 149

Teóricamente y bajo las condiciones óptimas, este proceso se podrı́a automatizar. Para

encontrar el momento en el que se introdujo un error, se usarı́a una prueba de señalización de

un error (TSB) que tendrı́a como resultado True cuando la instanánea en la que se prueba el

test pasa, y False cuando la prueba falla en las instantánea analizada del proyecto. A pesar de

la alta complejidad para automatizar este proceso, existe una manera fácil de encontrar el BIC

o FFM usando el modelo propuesto y se basa en buscar manualmente la primera instantánea

que no pasa el TSB. Esta instantánea contiene el commit que será el candidato perfecto para

ser el BIC o el FFM.

El modelo propuesto se centra en identificar el BIC para un BFC dado. Para mostrar cómo

funciona, se aplican las definiciones de BIC y BFC basadas en la existencia de un TSB. El

TSB se aplica en todas las instantáneas del proyecto anteriores al BFC para identificar si hay

un commit que introdujo el error arreglado en en BFC. Teniendo en cuenta que TSB tiene

una cobertura del 100% y que puede ejecutarse indefinidamente a lo largo de la historia del

código fuente de un proyecto, el modelo propuesto puede averiguar el BIC o el FFM de un

BFC analizando los cambios realizados para arreglar el error. Este TSB se ejecuta en todo el

conjunto de commits antecesores de las lı́neas modificadas en el BFC. Por lo tanto, cuando

la prueba TSB busca la instantánea que falla por primera vez; si se encuentra, el modelo la

considerará como candidato para ser el BIC.

B.4.1 Resultados del TSB

El resultado del TSB varı́a dependiendo de cada instantánea, y existen tres posibles resultados

al ejecutar el TSB:

1. Pasa: La función o caracterı́stica probada está presente en la instantánea y funciona

como la prueba esperaba, no hay BIC.

2. Falla: La función o caracterı́stica probada está presente en la instantánea pero la prueba

no funciona como se esperaba. Esta instantánea se considerada una candiata a BIC.

3. No-ejecutable: La función o caracterı́stica probada no está presente en la instantánea

y por tanto la prueba no puede ejecutarse en la instantánea.

Hay tres escenarios diferentes que ilustran cómo aplicar el test hipotética en el conjunto
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de ACS(i) para identificar si existe el BIC. En estos escenarios, se considera que la TSB tiene

un 100% de cobertura y puede ejecutarse indefinidamente a lo largo de la historia del código

fuente. Por lo tanto, el TSB se pasa a todas las instantáneas previas al BFC para buscar la

instantánea que falla; si se encuentra, se considerará como candidato a ser el BIC.

La Figura B.3 muestra cómo aplicar la prueba hipotética cuando hay existe un BIC y el

TSB se puede ejecutar en todas las instantáneas previas al BFC. Para identificar el BIC, el

TSB se ejecuta en todas las instantáneas del conjunto de commits ancestrales, y el BIS será

la primera que falle (i-1b). Se puede saber que el BIS es un BIC porque pasa la instantánea

anterior (i-2c).

Figure B.3: El Bug Introducing Snapshot es el BIC

La Figura B.4 muestra cómo se aplica la prueba hipotética cuando existe un BIC pero la

prueba TSB no se puede ejecutar después de una instantánea. Esto se debe a que la función

o caracterı́stica probada no se encuentra presente en ese momento. En este caso, el primer

BIS identificado es el BIC porque cuando introdujo la función o caracterı́stica probada, ésta

contenı́a errores.

La figura B.5 muestra cómo se aplica la prueba hipotética cuando no hay BIC y el TSB

se puede ejecutar indefinidamente a lo largo del historial del código fuente. La TSB siempre

falla con el entorno BFS en las instantáneas, pero si se establece el entorno anterior, pasará en

la instantánea descendente. Por lo tanto, el primer BIS antes de BFC será el FFM, no existe

BIC en el conjunto de commits antecesores.
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Figure B.4: El Bug Introducing Snapshot es el BIC

Figure B.5: El Bug Introducing Snapshot es el FFM

B.4.2 Criterio para aplicar el TSB

Cuando la historia de un proyecto es lineal, los investigadores pueden usar uno por uno todo

el conjunto de commits pertenecientes al ACS(i) para ejecutar el TSB en la rama master. Pero

cuando la historia del proyecto no es linearsi no que puede tener múltiples ramas, encontrar

el BIC o FFM puede llegar complicarse. Esto se debe a que el error podrı́a estar presente

en algunas de las ramas existentes y ausente en otras, y el concepto de FFM puede llegar

a ser incierto. Sin embargo, a primera vista, y suponiendo que teóricamente la prueba se

puede ejecutar para todas las instantáneas en el ACS(i), los resultados del TSB aún podrı́an

ser válidos para identificar el FFM o BIC ya que todavı́a encuentran secciones en una o más

ramas donde la prueba falları́a.

Es posible que, en algunos escenarios, el modelo propuesto defina el BIC como el topológicamente

primero en la sección de múltiples instantáneas con errores. Puede suceder que dos o más
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commits en paralelo comienzan a fallar hasta llegar al BFC, sin embargo, se puede considerar

que esto es una indicación de que el error fue introducido en el código fuente, independiente-

mente, en varias ramas o fue copiado (o escrito idénticamente por casualidad) en varias ramas.

Nuestra hipótesis es que estos escenarios no son comunes y por el momento podrı́amos no

centrarnos en ellos, pero al menos debemos mencionarlos en el modelo teórico.

Por lo tanto, para definir estos casos, podrı́amos extender la noción de BIC a “el conjunto

de BIC, que serı́a “los cambios correspondientes a la primera instantánea que falla, continu-

amente hasta llegar al BFC, en varias ramas que conducen hasta el BFC”.

Además, los investigadores pueden decir el tipo de BIS en base a si es un BIC, un FFM,

ambos, o indecisos.

1. Indeciso: Cuando no podemos encontrar el FFM o el BIC. En esta situación, no pode-

mos estar seguros de encontrar el FFM entre todos los commits pertenecientes al con-

junto ACS(b) usando el TSB

2. El FFM es el BIC: Cuando podemos encontrar el FFM entre todos los commits del

conjunto ACS(b) usando la prueba TSB y además podemos estar segurod de que ese

commit es la causa del error porque introdujo las lı́neas erróneas en el código fuente.

3. solo es un FFM: Cuando el error no fue causado por un cambio perteneciente al con-

junto ACS(b) si no que, un cambio en el entorno o un cambio en las dependencias del

proyecto causó el error y usando el TSB podemos encontrar la primera instantánea que

manifiesta el error.

Automatizar este proceso es tedioso y complejo, debido a la necesidad de recrear todas

las dependencias externas utilizadas en el proyecto en cada una de las instantáneas previas

a un BFC. Sin embargo, seguimos confiando en que la automatización puede ser posible en

base a declaraciones de estudios anteriores como el realizado por Bowes et al.. Este estudio

proporciona una lista básica de principios de prueba que se centra en diferentes aspectos de

calidad, además de la efectividad o la cobertura. Para nuestra investigación, el principio más

interesante es la (in)dependencia de prueba que describe que una prueba debe poder ejecu-

tarse en cualquier orden y de forma aislada. La prueba no debe depender de otras pruebas de

todos modos, para permitir a los profesionales agregar nuevas pruebas sin tener en cuenta las

dependencias o los efectos que puedan tener en las pruebas existentes [Bowes et al., 2017].
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B.5 Objetivos y Problema

El objetivo principal de esta tesis es desarrollar un modelo teórico que ayude a identificar

inequı́vocamente el cambio que introdujo la lı́nea o lı́neas erróneas en el código fuente de

un programa, a partir del arreglo del error. Para ello, esta tesis realiza un análisis minucioso

sobre las técnicas actuales usadas para identificar la causa del error, detallando el problema

actual que impide que estas técnicas identifiquen correctamente el cambio en el que el error

fue introducido en el código fuente. En concreto, esta tesis cuantifica las limitaciones encon-

tradas en el algoritmo SZZ. Desde hace mas de diez años, este algoritmo es el más utilizado

para encontrar el origen del error a pesar de que tanto investigadores como desarrolladores

y profesionales son conscientes de sus limitaciones. La falta de otro modelo que explique

como encontrar el verdadero origen de un error, ası́ como la falta de definición de lo que sig-

nifica un fallo, causan que todos los estudios que analizan el momento en el que un error es

introducido empiecen con la misma premisa “Las lı́neas modificadas que arreglaron el error

son potencialmente culpables de introducir el fallo en el sistema”. Esta premisa trata a los

errores como una variables estáticas que permanece en el sistema desde que se introducen,

cuando en realidad los errores no deben ser estudiados como variables estáticas, ya que fac-

tores externos como cambios el las APIs o la evolución interna del sistema causan que una

lı́nea correcta en un un momento determinado empiece a manifestar el error en un momento

posterior.

Para resolver la falta de definiciones y las limitaciones yacentes en los algoritmos actuales.

Esta tesis propone un modelo teórico para definir qué cambios introducen errores en el código

fuente. Este modelo se basa en la suposición que existe una prueba de test perfecta que puede

ejecutarse indefinidamente en toda la historia del proyecto con el fin de descubrir cuándo se

insertó el error en el código fuente del proyecto. Además, este modelo puede usarse como

marco para validar los resultados obtenidos en otrros enfoques. Establecer este marco es

uno de los principales valores de la tesis porque la literatura previa ha podido calcular con

exactitud la precisión y el recall “real” de los algoritmos actuales usados para identificar el

BIC.

A continuación se puede encontrar un listado de las contribuciones principales de la tesis:

1. Revisión de la literatura asistemática en el uso del algoritmo SZZ:



154 APPENDIX B. RESUMEN EN CASTELLANO

(a) Una visión general del impacto que el algoritmo SZZ ha tenido hasta ahora en el

área de ESE.

(b) Una visión general de cómo los estudios que usan el algoritmo SZZ abordan la

reproducibilidad en su trabajo de investigación.

(c) Un análisis de cómo estos estudios manejan las limitaciones del algoritmo SZZ

2. Un modelo teórico para identificar inequı́vocamente los cambios de introducción de

errores

(a) Una definición detallada del Bug-Introducing Change y First-Failing Change

(b) El criterio usado para aplicar el modelo.

3. Estudio empı́rico sobre la aplicación del modelo propuesto

(a) La frecuencia de BFC inducida por BIC en Nova y ElasticSearch

(b) El conjunto de datos “estándar de oro”

4. Cuantificación del algoritmo SZZ.

B.6 Metodologı́a

La metodologı́a utilizada en este estudio empı́rico se divide en dos partes, la primera parte es

la etapa de filtrado donde los investigadores se aseguran que los conjuntos de datos extraı́dos

de Nova y ElasticSearch cumplen con los requisitos para ser analizados usando la teorı́a de

la introducción de errores descrita anteriormente. La segunda etapa describe cada uno de los

pasos que hay que seguir desde que se selecciona un BFC hasta que se identifica el BIC y el

FFM.

La figura B.6 proporciona una visión general de cada paso involucrado en nuestro estudio,

ası́ como los resultados que se obtendrı́an.

B.6.1 Primera Etapa: Filtrado

Esta etapa garantiza que el modelo propuesto se pueda aplicar a los informes de errores

extraı́dos anteriormente. Uno de los requerimientos necesarios en esta etapa es que los in-
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Figure B.6: Descripción de los pasos involucrados en nuestro análisis

formes de error que pasen a la siguiente etapa describan realmente errores, y a pesar de la

estricta polı́tica de etiquetado de errores presente en ElasticSearch y la clasificación man-

ual para distinguir informes de errores de otro tipo de errores llevada acabo en Nova, esta

etapa se encarga de analizar cuidadosamente cada información en los informes de errores

para garantizar que el “estándar de oro” obtenido al final del estudio es lo más preciso posi-

ble. Consecuentemente, el conjunto de datos tanto en Nova como en ElasticSearch, solo debe

almacenar errores que se consideran errores en el momento de su correción. Por ejemplo,

hay una prueba (hipotética) que falla justo antes del BFC pero no falla inmediatamente de-

spués. Esto asegura que si existen problemas que se describen como errores pero se descubre

que son nuevas peticiones para añadir nuevas caracterı́sticas o sugerencias de mejoras, serán

excluidas.

B.6.2 Segunda etapa: identificar el BIC y el FFM

Esta etapa tiene como entrada un conjunto de informes de errores de Nova y ElasticSearch que

describen errores reales en el momento de su corrección. En esta etapa se require identificar

manualmente el BIC y el FFM correspondiente a un BFC dado, aunque en algunas ocasiones,

no se puede identificar ningún BIC como el inductor del BFC. La identificación de un BIC

dado un BFC significa que el error estaba presente en el momento de escribir las lı́neas en

el código fuente. El BIC puede estar en el commit previo o en cualquiera de los commits

descendientes o antecesores, por tanto se requiere analizar manualmente cada uno de ellos

para garantizar la credibilidad en el “estándar de oro”. En los casos en que el error no está
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presente en el momento de insertar las lı́neas en el código fuente, significa que no podemos

identificar ningún BIC y es necesario encontrar el FFM. Para entender mejor este proceso,

los pasos seguidos se detallan a continuación donde se hace uso de la terminologı́a que se

encuentra descrita en la sección 5.1.1.

Encontrar las lı́neas que corrigieron el error

En esta etapa, se debe identificar las lı́neas de código fuente que corrigió el error; nos referi-

mos a un error genérico como b. Es importante:

• Identificar los commits que corrigieron el error entre el conjunto BFC(b). En la

mayorı́a de los casos analizados, este conjunto siempre fue unitario, lo que significa

que para cada error habı́a un BFC único que lo arreglaba. Sin embargo, encontramos

algunas excepciones, por ejemplo, el informe de error #14427953 tenı́a dos BFC difer-

entes que corrigieron el error. Para simplificar este proceso, la metodologı́a asume que

el conjunto BFC(b) es unitario, y en el caso donde más de un BFC corrigió el error, la

metodologı́a analizará ambos commits indistintamente para identificar el BIC.

• Encuentra las lı́neas que fueron modificadas por el BFC(b) para corregir el error, nos

referiremos al conjunto de lı́neas añandias, modificadas y eliminadas por un commit

como LC(c) donde c es el BFC: El BFC se encuentra vinculado a un informe de error,

en este informe se encuentra disponible toda la información relacionada con el proceso

de revisión del código. Aplicando la herramienta “git diff ” es posible identificar qué

lı́neas se han agregado, modificado o eliminado entre la versión después del BFC y la

anterior. También existe la posibilidad de visualizar los cambios realizados por el BFC

usando la herramienta web de GitHub donde visualmente se observan de una forma

muy intuitiva los cambios realizados en el BFC.

• Filtrar las lı́neas modificadas o eliminadas que no son código fuente: Algunas lı́neas

que se han modificado o eliminado pueden no contienen código fuente (por ejemplo,

comentarios o lı́neas en blanco). Éstas lı́neas no se consideran en el posterior anális.

Además, como caso excepcional, en el conjunto de BFC analizados se encontraba un

3https://bugs.launchpad.net/nova/+bug/1442795
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BFC4 que arregló dos informes de errores diferentes al mismo tiempo. En este caso, se

eliminaron el conjunto de LC(c) relacionadas con el informe de error que no se estaba

analizando.

.

Determinar qué commit cambió por última vez cada una de las lı́neas LC(c).

Cada una de las lı́neas modificadas por un BFC tiene un único commit previo. Sin embargo,

podrı́a haber tantos commits previos como lı́neas modificadas en por un BFC, (la figura del

árbol genealógico representado en la subsección 5.1.2 muestra visualmente este concepto).

Consecuentemente, el resultado obtenido en este paso es un conjunto de todos los commits

previos del error b, PCS(b).

Analizando cada una de los commits previos, y sus commits descendientes, para identi-

ficar el BIC y el FFM

En este paso se utiliza la información disponible en la descripción del ticket, en los registros

del BFC y en commits pertenecientes al conjunto de PCS(b) para analizar si existe o no un

BIC y si manualmente podemos identificarlo. Después de entender el error y los cambios

que arreglaron ese error, es necesario identificar el BIC en caso de que exista, ası́ como el

FFM. Consecuentemente, la identificación del BIC comienza con el análisis del conjunto de

PCS(b), para cada uno de los commits pertenecientes al conjunto de PCS(b) se analizan

las lı́neas modificadas para encontrar si alguno de los commits previos introdujo el error. En

este punto, hay tres escenarios diferentes y el comportamiento es difiere según las siguientes

condiciones:

1. El commit insertó las lı́neas que contienen el error: Este commit es el BIC porque

insertó las lı́neas defectuosas en el código fuente en el momento de su escritura. El BIC

que a su vez es el FFM se pudo identificar porque es el primer commit que manifestó

el comportamiento incorrecto. De acuerdo con el modelo teórico, el TSB ejecutado en

el BFC pasa y el BIS es una de las instantáneas previas, es decir, es uno de los commits

previos del BFC.

4https://github.com/elastic/elasticsearch/commit/beaa9153a629c095
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2. El commit no inserta las lı́neas que contienen el error: en este caso, hay dos resultados

posibles:

• Las lı́neas del commit son correctas ya que no insertaron el error en las lı́neas del

código fuente en el momento de su escritura y otros factores externos causaron

que esas lı́neas se volvieran defectuosas. En este escenario, no hay un BIC en y

el análisis debe centrarse en comprender si este commit es el FFM. De acuerdo

con el modelo teórico, la TSB se ejecuta en todo el ACS(b) y pasa en el BFC

pero siempre falla en las instantáneas de los ancestros. Sin embargo, si se cambia

el entorno, el TSB falla en el BFC pero pasa en la instantáneas anteriores, y el

primer BIS que falla en la secuencia continua de BIS es el FFM.

• Las lı́neas del commit son cambios sintáctico y modificaciones semánticas equiv-

alentes (refactorizaciones): Esto significa que el commit conserva el mismo com-

portamiento que antes, por lo tanto, es necesario volver a navegar, en el conjunto

de DCS(b) y volver al primer punto de esta lista para identificar el BIC.

3. No es seguro que el commit insertase el error: en este escenario, es importante con-

tinuar navegando por el conjunto de DCS(b), si el commit insertó por primera vez en

las lı́neas descendentes al conjunto de lineas del LC(c) y no podemos estrar seguros

de que esas l’́ineas contengan el error, el commit se clasifica como “indecisa”. Esto

significa que después del análisis, el BIC no se pudo encontrar manualmente a pesar de

que podemos asegurar su existencia, o que no podemos asegurar el FFM o BIC debido

a la falta de información.

B.6.3 Resultados de las etapas

Al final del proceso, hay tres resultados posibles para cada informe de error analizado. Los

resultados se basan en la identificación inequı́voca del BIC y del FFM dado un BFC. Estos

resultados se encuentran explicados a continuación:

• Un BFC fue inducido por un BIC: en este caso es seguro que al menos hay un commit

que introdujo las lı́nea(s) errónea(s) entre el conjunto de commits previos, o conjunto
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de commits descendientes o el conjunto de commits de ancestros. Sin embargo, durante

el análisis manual puede ocurrir que:

1. El momento se pudo identificar manualmente o,

2. El momento no se pudo identificar manualmente.

Además, en este escenario, el BIC es también el FFM.

• Un BFC no fue inducido un BIC: en este caso es seguro que ninguna lı́nea insertada en

el código fuente contenı́a el error cuando se introdujo el commit, y otros factores como

por ejemplo, los cambios en las necesidades internas del proyecto, o cambios en los

recursos externos consumidos por el proyecto, provocan que el código se vuelva de-

fectuoso. También se puede confirmar que ninguno de los commits antecesores insertó

las lı́neas incorrectas, por lo que no se puede culpar a ninguno de ellos como el BIC y

solo se podrá identificar la primera vez que manifiesta el error en el código. Además,

en este escenario puede ocurrir que:

1. El momento se pudo identificar manualmente o,

2. El momento no se pudo identificar manualmente.

• No está si un BFC due inducido por un BIC: algunos informes de errores no detallan

suficiente información sobre el error y el BFC no es suficiente para decidir si hay o no

un BIC. Además, algunos commits son muy complejos para comprender sus cambios

y no se puede decidir si insertaron o no el error.

B.7 Resultados

Hay tres secciones diferentes para discutir los resultados obtenidos en el Capı́tulo 4, Capı́tulo

5 y Capı́tulo 6.

B.7.1 Reproducibilidad y credibilidad del algoritmo SZZ

En el Capı́tulo 4 de esta tesis se detalla el estudio de la revisión sistemática de la liter-

atura (SLR) sobre el uso del algoritmo SZZ en estudios empı́ricos de ingenierı́a del software
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Table B.1: Los tipos o publicaciones más frecuentes que utilizan completamente el algoritmo

SZZ (N = 187). #diferentes cuenta los diferentes lugares en cada grupo, #publications cuenta

el número total de publicaciones en ese tipo de lugares.
Tipo # Diferentes # publicaciones

Revistas 21 42
Conferencias & Simposiums 40 102
Workshops 13 13
Tesis universitarias 20 30

(ESE).La SLR demostó que el algoritmo es ampliamente usado en la ESE y que posee una

alta relevancia, no se limita solamente a una audiencia especı́fica, si no que se ha difundido

por numerosas publicaciones en revistas y conferencias importantes en varias areas de la In-

genierı́a del Software. Tabla B.1 muestra los diferentes medios de publicaciı́on que han usado

el algoritmo SZZ. Hay cuatro diferentes medios: Tesis universitarias, artı́culos en workshops,

artı́culos en conferencias y symposiums, y artı́culos en revistas.

Durante la SLR se ha observado que las limitaciones del algoritmo SZZ son bien cono-

cidas y documentadas. Se han propuesto mejoras para mitigar las limitaciones que presenta,

pero hasta el moment no han llegado a tener demasiado éxito. Además, mientras que las lim-

itaciones de la primera parte del algoritmo, relacionadas con enlazar los Bug-Fixing Commits

(BFC) con lo bug reports, han obtenido significantes mejoras. Las propuestas para mitigar

las limitaciones de la segunda parte, relacionadas con encontrar el Bug-Introducing Commit

(BIC), todavı́a tiene espacio para mejorar.

La SLR ha demostrado que la mayorı́a de las publicaciones que usan el algoritmo SZZ,

o sus versiones mejoradas: SZZ-1 [Kim et al., 2006c] y SZZ-2 [Williams and Spacco, 2008],

no mencionan las limitaciones, y lo que resulta mas interesante es que las limitaciones de la

primera parte del algoritmo resultan ser más discutidas que las de la segunda parte a pesar

de ser menos relevantes para la veracidad de los resultados obtenidos. La Tabla B.2 muestra

cuántas publicaciones han utilizado mejoras en el algoritmo SZZ para mitigar las limita-

ciones del original. Tenga en cuenta que la columna “Mixed ” de la Tabla B.2 se refiere a

los documentos que han utilizado la versión original, y alguna de las versiones mejoradas en

el mismo estudio. En la Tabla B.2 se puede observar que solamente el 38% de las publica-

ciones analizadas usan la versión original SZZ. Por tanto, para aumentar la reproducibilidad
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Table B.2: Número de artı́culos que han utilizado el algoritmo SZZ original, las versiones

mejoradas del SZZ o algunas adaptaciones para mitigar las amenazas de validación.
Original SZZ only SZZ-mejorado only SZZ-modificado Mezcla

# artı́culos 71 (38%) 26 (14%) a 75 (40%) 15 (8%)

a22 (12%) de los artı́culos usan el SZZ-1 y solo 4 (2%) de los artı́culos usan el SZZ-2.

y credibilidad de los resultados, recomendamos que los investigadores que desarrollen modi-

ficaciones del algoritmo SZZ, publiquen el software implementado en sitios como GitHub,

de este modo otros investigadores pueden fork el proyecto. Esos forks pueden ser fácilmente

trazados, y los autores pueden preguntar por una especı́fica citación a su solución si otros

autores hacen uso de ella. Además otra de las ventajas que posee el publicar el software

implementado es que la reproducibilidad es más especı́fica, debido a que en ocasiones los

autores por falta de espacio no mencionan como funciona o como se implantó el algoritmo

que han usado y es posible que este hecho esconda errores al reproducir el estudio.

Hemos encontrado que la reproducibilidad de las publicaciones es limitada, y los pa-

quetes de réplica se ofrecen muy raramente. La Tabla B.3 ofrece el número de estudios que

a)contiene un paquete de reproducción, b) han detallado cuidadosamente la metodologı́a para

permitir las reproducciones de sus estudios. Hemos clasificado las publicaciones en cuatro

grupos: i) publicaciones que ofrecen un paquete de reproducción (paquete), ii) publicaciones

que detallan la metodologı́a y los datos utilizados (Environment), iii) publicaciones que tienen

ambos Ambos) y iv) Ninguno (Ninguno).

De las 187 publicaciones, 43 ofrecen un paquete de reproducción y 96 cuidadosamente

detallan los pasos seguidos y los datos utilizados. Además, solo 24 de los artı́culos propor-

cionan tanto el paquete de replicación como la metodologı́a y los datos detallados. 72 de

los documentos no ofrecen un paquete de reproducción o una descripción detallada de la

metodologı́a y los datos usados.

A pesar de que usar las versiones mejoradas del algoritmo SZZ ayuda a aumentar la

precisión del algoritmo como señala [Rahman et al., 2012]: “Accuracy in identifying Bug-

Introducing Commit may be increased by using advanced algorithms (Kim et al. 2006,

2008)”, raramente se usan – sóle el 22% de las publicaciones usan una de las dos mejo-

ras propuestas para el algoritmo SZZ. Parece que los investigadores prefieren reinventar la
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Table B.3: Publicaciones por su reproducibilidad: Filas: Si significa el número de tra-

bajos que cumplen cada columna, mientras que su complemento es No. Columnas: Pa-

quete es cuando ofrecen un paquete de reproducción, Environment cuando proporcionan la

metodologı́a detallada y un conjunto de datos usados. Tenga en cuenta que Both es la inter-

sección de Paquete y Environment. (N = 187)
Solo paquete Solo Environment Ambos Ninguno

Si 19 72 24 72
No 168 96 163 115

rueda, el 49% de los artı́culos analizados usan una versión modificada o “ad-hoc” por ellos

mismos del SZZ, en vez de utilizar las mejoras propuestas en otros artı́culos. Una posible

razón para explicar este comportamiento poorı́a ser que los artı́culos que describen el SZZ o

cualquiera de sus mejoras propuestas, SZZ-1 y SZZ-2, no aportan el código software de la im-

plementación. Por ello, los investigadores tienen que implementar el software desde cero para

poder usarlo en sus investigaciones. Nuestros resultados muestran que en dicha situación, lo

que se hacer es usar el concepto general que describe el algoritmo SZZ y añadir algunas

modificaciones con el propósito de mitigar algunas de las limitaciones presentes en el SZZ

original. Para todos las soluciones identificadas como “ad-hoc”, no se ha encontrado ninguna

razón que explique el por qué no se implementaron las otras mejoras del SZZ. Otro prob-

lema importante es el etiquetado del las mejores de SZZ, ya que no han sido ni etiquetadas

ni enumeradas. Cuando una versión mejorada del SZZ es usada en los artı́culos, a menudo

lo autores se refieren a ella como SZZ, dificultando el seguimiento, la reprodureproción y la

ráplica de sus resultados.

Por otro lado, en esta tesis se ofrece una simple manera de medir la facilidad de repro-

ducción y credibilidad en los artı́culos de investigación. Esta medida se basa en puntuar

cinco caracterı́sticas que se analizaron en los artı́culos. Si las preguntas fueron respondidas

positivamente, el artı́culo fue marcado con un puntaje positivo, de lo contrario con un 0:

1. ¿El estudio informa de las limitaciones del SZZ? (puntaje = 1 punto)

2. ¿Los autores llevan a cabo una inspección manual de sus resultados? (puntaje = 1

punto)
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3. ¿El estudio aporta un paquete de reproducibilidad? (puntaje = 2 puntos)

4. ¿El estudio proporciona una descripción detallada de los métodos y datos utilizados?

(puntaje = 1 punto)

5. ¿Utiliza el estudio una versión mejorada de SZZ? (puntaje = 2 puntos)

Los artı́culos que sumen puntos del 0 al 1 se consideran Pobres de ser reproducibles y

poseer resultados creı́bles. Los artı́culos que sumen puntos del 2 al 4 se consideran Justos

de ser reproducibles y poseer resultados creı́bles. Aquellos artı́culos que sumen puntos del

5 al 6 se consideran Buenos de ser reproducibles y poseer resultados creı́bles. Finalmente

los artı́culos que sumen 7 puntos se consideran Excelentes de ser reproducibles y poseer

resultados creı́bles

Durante el análisis también hemos observado que raramente se encuentran informes ex-

haustivos completos de la reproducibilidad, solamente se han clasificado un 15% de los

artı́culos como buena y excelente calidad con respecto a la reproducibilidad. La comunidad

de investigación debe poner mayor atención a estos aspectos; nosotros creemos que se está

otorgando demasiada atención a los resultados finales (el producto de la investigación: nuevo

conocimiento) en comparación con el proceso de investigación. Como investigadores en el

campo de la ingenierı́a del software sabemos que ambas partes – una alta calidad del producto

y una alta calidad del proceso – son esenciales para obtener progresos exitosos a lo largo del

tiempo [Kan, 2002].

Para resumir, consideramos importante resaltar algunas de las lecciones aprendidas de-

spués de llevar a cabo la SLR. El algoritmo SZZ está basado en heurı́sticos y asunciones,

por tanto para aportar unos resultados más creı́bles, recomendamos que los investigadores

especifiquen y argumenten el uso de esos métodos y algoritmos cuyo fin es mitigar las limita-

ciones presentes en el SZZ en sus estudios. Ser consciente del riesgo de cada asunción usada

y si es necesario, validar manualmente una porción de los resultados obtenidos. Además,

para llevar a cabo estudios empı́ricos, los autores deben ser conscientes que para permitir la

reproducción de sus publicaciones, el mejor método es incluir un paquete de reproducción

que puede estar públicamente disponible junto con su publicación (idealmente para siempre).

Por otro lado, ellos también tiene que ser conscientes de que algunas caracterı́sticas en sus

estudios pueden cambiar, por ejemplo los entornos del software, causando que programa y
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los datos se encuentren obsoletos, por lo que es necesario detallar y describir con precisión

cada uno de los elementos, mt́odos y software usados durante el estudio.

B.7.2 Teorı́a de Inserción del error

Esta tesis propone una solución al problema actual de identificar el Bug-Introducing Commit

(BIC) dado un commit que arregla un error (BFC). Actualmente, la mayor parte del trabajo

se basa en métodos y técnicas formuladas bajo la suposición intrı́nsecamente errónea de que

las lı́neas de código que se han modificado para corregir el error, son las lı́neas que han intro-

ducido el error en primer lugar. La naturaleza problemática de esta suposición es conocida,

como se ha demostrado anteriormente en la revisión sistemática de la literatura. Sin embargo,

esta tesis hace una contribución importante al tratar de cuantificar el alcance del problema y

al detallar un nuevo modelo de introducción de errores para encontrar la primera vez que

el software manifiesta un comportamiento incorrecto, sin la necesidad de culpar a un cambio

como el Bug-Introducing Commit, si no que identifica el primer cambio que establece el error

y comprende ese momento en su contexto y dependencias.

Después de analizar varios informes de errores durante esta tesis, nos hemos dado cuenta

que determinar dónde, cuándo y cómo se introdujo un error no es una tarea trivial, en la que a

veces se involucran muchos investigadores con el fin de aclarar la naturaleza del error investi-

gado. De hecho, no es fácil determinar si el error estaba presente en el código en el momento

de realizar un cambio. Por ejemplo, hay casos en los que las técnicas automáticas actuales no

pueden determinar el punto de introducción del error, ya que no se puede identificar ningún

commit previo. Uno de esos casos es cuando el commit/cambio que arregla el error (BFC)

solo introduce nuevas lı́neas en el código: en este caso, no hay forma de identificar el com-

mit(s) previo(s) tal como lo definimos, ya que no hay ningú commit previo tocando las lı́neas

que han sido añadidas. En este caso, solo la descripción del informe del error o la descripción

y el cd́igo fuente del BFC podrı́a aclarar si las nuevas lı́neas no se incluyeron debido a un

olvido en un cambio ancestor o debido a que se incluyeron para satisfacer algún nuevo req-

uisito o nueva caracterı́stica del proyecto.

La SLR ayudó a cuantificar las limitaciones y los problemas que afectan a los algoritmos

que se basan en el SZZ y son utilizados para identificar el Bug-Introducing Commit. Por

tanto, teniendo esto en consideración, hemos propuesto un modelo en el que, por definición,
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se integran todos los escenarios que imposibilitan el correcto funcionamiento del SZZ. El

modelo propuesto es capaz de lidiar con estos escenarios y dar solutión al problema. A

continuación, explicamos brevemente como el modelo propuesto es capaz de abordar cada

una de las limitaciones encontradas en la SLR.

1. Identificación de más de un commit previo: Nuestro modelo no trata de identificar los

commits previos de las lı́neas modificadas o eliminadas en un BFC, si no que a través

de un test comprueba el comportamiento de la funcionalidad que se arregló en el BFC

en todas las instantáneas anteriores, descendientes y ancestrales del proyecto que esta

siendo analizado hasta que encuentre la primera vez que el test falla.

2. La utilización de nuevas lı́neas para corregir el error en el BFC: Nuestro modelo no

busca las lı́neas que se han modificado o eliminado para corregir un error, sino que

considera todos los cambios realizados en el BFC, puesto que comprueba la funcional-

idad que estaba fallando. Por tanto no distingue entre los BFC que solo presentan lı́neas

añadidas para descartarlos del análsis.

3. Presencia de cambios en el entorno o la configuración: Con nuestro modelo podemos

detectar errores causados ??por un cambio en los entornos, ya sea que podrı́amos ser

capaces de reproducir el entorno anterior y posterior a un BFC y observar que con

un entorno especı́fico anterior al BFC las pruebas de comprobación pasan en las in-

stantáneas previas al BFC, pero que con este entorno fallan en la instantánea del BFC

y al revés. En este caso, habrá un FFM pero no un BIC.

4. Varias modificaciones sobre una lı́nea: en nuestro modelo, no importa cuántas veces se

haya modificado una lı́nea, ya que no señala al último cambio como el BIC. La prueba

de comprobación busca la primera vez que se inserta el error en la lı́nea que se está

probando.

5. Nivel semántico débil: como en el ejemplo anterior, el modelo propuesto trata con el

inconveniente de tener un nivel semántico débil porque no se centra en identificar el

último cambio, sino que prueba el comportamiento del código.

6. Un BFC corrige a la vez más de un error: en estos casos, nuestro modelo puede diseñar

una prueba de comprobación especı́fica para cada error, buscando la primera vez que la
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prueba falla al comprobar la presencia de un error concreto en instantáneas anteriores

al BFC.

7. Razones de compatibilidad:

8. Errores latentes: el modelo identifica la primera vez que el error se insertó en el código

fuente utilizando el la prueba de comprobación, por tanto, no importa cuánto tiempo

haya permanecido el código defectuoso en el proyecto, porque teóricamente encon-

traremos la primera vez que se introdujo.

Muchos investigadores han basado sus métodos para localizar el cambio que introdujo el

error en el algoritmo SZZ o algoritmos similar, estos métodos carecen de medios para hacer

frente a las limitaciones anteriormente comentadas, y por tanto tienen que formular algunas

heurı́sticas que, por ejemplo, eliminan el BFC con solo nuevas lı́neas añadidas porque no

pueden rastrear esas lı́neas, o eliminan commit numerosas modificaciones o eliminan los

commits más antiguos porque es poco probable que sean el BIC [da Costa et al., 2016]. Como

consecuencia, estos heurı́sticos pueden inducir a errores en los resultados, y mostrar un mayor

porcentaje de precisión del algoritmo al identificar el BIC.

El SZZ es el algoritmo, hasta ahora, más conocido y más fácil de usar para identificar el

cambio que introdujo el error o BIC. Debido a esto, algunos estudios utilizan el algoritmo

SZZ o variantes de él para extraer conjuntos de datos relacionados con el BIC y los usan para

alimentar sus modelos de predicciń o clasificaciń de errores. Por ejemplo, Ray et al. usaron

un conjunto de datos que se recopiló usando el algoritmo SZZ para estudiar la naturalidad del

código con errores [Rahman et al., 2014]. Massacci et al. evaluó la mayorı́a de los modelos

de detección de vulnerabilidades existentes en los navegadores web y usó muchos conjuntos

de datos construidos usando el algoritmo SZZ [Massacci and Nguyen, 2014]. Finalmente,

Abreu et al. usó el conjunto de datos obtenido en [Abreu et al., 2009] para estudiar cómo la

frecuencia de comunicación entre desarrolladores afecta el hecho de introducir un error en el

código fuente.

En general, este nuevo modelo propuesto, es capaz de distinguir entre dos momentos

relevantes dado un commit que corrige un error BFC, estos momentos son el momento de

introducción del error BIC y el momento de manifestación de ese error en el código FFM.

Mientras que el primer momento no siempre existe, debido a que algunos cambios externos
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o la evolución de los requisitos internos han cambiado provocando la falla, siempre hay un

primer momento de fallo que indica cuándo el proyecto manifiesta el error corregido por el

BFC. Para obtener resultados creı́bles en las áreas de predicción de errores, categorización

de errores y los modelos de detección de errores, es necesario estudiar y distinguir estos dos

momentos, ya que como demuestró nuestro estudio empı́rico los algoritmos o basados en

el SZZ o variantes de él identifican desde el 26% hasta el 38% de falsos positivos “reales”.

Por lo tanto, estos resultados son alentadores para comenzar a pensar e implementar nuevos

métodos basados ??en el modelo teórico propuesto en esta tesis, o al menos, considerar re-

formular correctamente la definición de insertar un error en el código fuente. Ya que hasta

ahora, el proceso de insertar un error en el código ha sido considerado como un problema

estático, en el sentido que para los investigadores siempre ha estado presente el error que

se ha corregido. Nuestra intuición nos lleva a reclamar nuevos métodos que sean capaces

de distinguir entre lı́neas defectuosas que contienen el error en el momento de insertarlas y

lı́neas limpias que no contienen el error en el momento de insertarlas. Esta disertación ha

demostrado que existen otras razones externas e internas que provocan un fallo en el sistema,

y no es justo culpar a un cambio anterior como el responsable de provocar el error cuando

éste cambio era correcto en el momento en el que introdujo, es decir, éste cambio cumplı́a las

funcionalidades, entornos, necesidades y requisitos del proyecto. Aunque hemos conseguido

profundizar en el problema de identificar correctamente el cambio que provocó el error, nece-

sitamos dedicar más esfuerzo para lograr una mayor automatización del modelo propuesto,

encontrar formas o técnicas que sean capaces de abordar tanto el problema de reconstrucción

de un entorno antiguo, como capaces de construir un test que pueda ser automatizado o par-

cialmente automatizado para encontrar los dos momentos más importantes, el BIC y el FFM.

B.7.3 Estudio Empı́rico: Aplicación de la teorı́a propuesta para localizar

el momento de introducción de un error

El estudio empı́rico detallado en el Capı́tulo 6 respalda la necesidad de búsqueda de un nuevo

modelo para identificar inequı́vocamente los cambios que introducen errores, ya que no siem-

pre es obvio identificar y entender cómo se introducen los errores en el código fuente con los

métodos actuales. Esta tesis presenta en el Capı́tulo 5 un nuevo modelo que resuelve esta
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Table B.4: Porcentaje de Bug-Fixing Commit que han sido inducidos por un Bug-Introducing

Commit BIC, y que no han sido inducidos por un Bug-Introducing Commit NO BIC.

BIC NO BIC

Nova 45 (79%) 12 (21%)

ES 54 (91%) 5 (9%)

necesidad y su implementación se ha estudiado empı́ricamente en el Capı́tulo 6. Dónde el

modelo propuesto se ha utilizado para llevar a cabo un estudio cualitativo de un conjunto de

informes de errores para identificar, si existe, el cambio que introdujo el error (BIC) dado un

cambio que arregló el error (BFC).

Identificar las lı́neas que contienen un error en el código fuente de un proyecto no es un

proceso tan sencillo como se podrı́a pensar en un primer momento. De los 120 informes

de errores extraı́dos de Nova y ElasticSearch en la primera fase, 116 informes pasaron a la

segunda fase, cada uno de los informes de error se encuentra enlazado con el cambio que

arregló el error. En la segunda fase, los investigadores analizaron manualmente si el BFC

fue inducido por un BIC los resultados se presentan en la Tabla B.4. La tendencia en los

resultados de ambos proyectos fue similar, ya que ambos resultados presentan un mayor por-

centaje de BFC que fueron inducidos por un BIC en lugar de ser inducidos por otras razones.

Sin embargo, el porcentaje de BFC que no fue inducido por un BIC es más representativo

en Nova con un 21% de los BFC que arregló un error que no se introdujo en las lı́neas del

sistema. Por el contrario, este porcentaje es menor en ElasticSearch, donde solo el 9% de los

BFC no fueron inducidos por un BIC. Además, de los 45 BFC inducidos por un BIC en Nova,

fuimos capaces de identificar manualmente 34 de ellos. Mientras que en ElasticSearch, de

los 54 BFC inducidos por un BIC fuimos capaces de identificar manualmente 38 de ellos.

En ambos proyectos se puede observar la dificultad en la tarea de identificar manualmente el

origen del error, ya que el porcentaje de duda entre los BFC analizados alcanza un 19% en

Nova y el 27% en ElasticSearch.

Durante el análisis manual, se descubrieron algunas razones que explican por qué un BFC

no es inducido por un BIC que se han presentado en forma de una clasificación anecdótica. La

Tabla B.5 muestra las razones más comunes en ambos proyectos. En Nova, con un porcentaje
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de ocurrencia del 42% la razón principal fue la Co-evolución de las lı́neas que se cambiaron

para corregir el error con los requisitos internos del proyecto. Es decir, debido a la evolución

del proyecto, las lı́neas que fueron insertadas en un momento puede que no tengan sentido o

no cumplan las necesidades actuales del proyecto y se ha manifestado un error en esas lı́neas,

sin embargo, este error no significa que las lı́neas fuesen erróneas en el momento que fueron

insertadas, si no que debido a las nuevas necesidades del proyecto han pasado a manifestar el

error. El segundo motivo, con un porcentaje de ocurrencia del 33% es la presencia de errores

en APIs externas que son consumidas por nuestro código. La tercera razón más frecuente

es la Co-evolución de las lı́neas que se modificando para corregir el error. Por otro lado,

en ElasticSearch los porcentajes se distribuyen por igual con un 40% de ocurrencia en Co-

evolución interna y errores en APIs externas, con la única excepción de que en este proyecto

no encontramos ningún error causado por la incompatibilidad de hardware y software. Esta

clasificación anecdótica que explica las razones por las cuales un BFC no es inducido por un

BIC deberı́a investigarse con mayor profundidad, ya que puede ayudar a los investigadores a

identificar patrones diferentes y quizás ocultos, que ayuden a explicar y entender mejor cómo

se insertan y se manifiestan los errores en el código fuente. El propósito de esta tesis no

es establecer una única clasificación que explique los motivos por los cuales un BFC no es

inducido por un BIC o que esta clasificación se pued a extender a otros proyectos, si no que el

motivo inicial de la clasificación es alertar e informar sobre el hecho de que hay otras razones

donde una lı́nea que cuando no se insertó no era defectuosa está causando/manifestando un

error. Por tanto, creemos que estos casos deberı́an analizarse en profundidad para mejorar las

clasificaciones actuales basadas en el origen del error.

Después de analizar varios errores durante el estudio empı́rico, se ha observado que al-

canzar un acuerdo en la clasificación de la causa raı́z de un error es tedioso y muchas veces

se basa en la subjetividad de los investigadores. Cabe señalar que, aunque el análisis manual

fue realizado principalmente por el autor de esta tesis, otros investigadores se involucraron

para discutir y analizar la causa del error, en caso de dudas. Por lo tanto, esta disertación

sugiere una clasificación inicial, sin tratar de hacer ninguna afirmación al respecto, pero se

observa a partir de los resultados que del 9% al 21% de los BFC analizados no fueron induci-

dos por BIC y esta clasificación puede ayudar a entender mejor los principales motivos. Es

posible que si otros investigadores repliquen nuestro trabajo, puedan obtener leves diferen-
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Table B.5: Razones por las cuales un Bug-Fixing Commit no es inducido por un Bug-

Introducing Commit

Nova ElasticSearch

Co-evolución Interna 5 (42%) 2 (40%)

Co-evolución Externa 2 (17%) 1 (20%)

Compatibilldad 1 (8%) 0 (0%)

Error en API Externa 4 (33%) 2 (40%)

cias en la clasificación, puesto que en algunos casos sin una guı́a detallada, el análisis puede

ser subjetivo. Y por ello, actualmente estamos trabajando en minimizar lo máximo posible la

subjetividad en la clasificación.

Esta tesis discute un amplio abanico de opciones en términos de lo que puede ser y

no puede ser un BIC y también, cómo el algoritmo SZZ fallará dependiendo de la imple-

mentación/versión especı́fica que se use del algoritmo SZZ. Un elemento esencial del estudio

empı́rico es la obtención del “estándar de oro”, ya que tiene las caracterizaciones de los BIC.

Por lo tanto, el estudio puede cuantificar el número “real” de falsos positivos, falsos neg-

ativos y verdaderos positivos en el rendimiento de los algoritmos SZZ y SZZ-1, que hasta

donde sabemos, nadie ha intentado cuantificar anteriormente. En base a los resultados pre-

sentados en la Tabla B.6 (mas detalles en el Capı́tulo 6, Sección 3.4,), en el mejor escenario, el

algoritmo calcula el 55% de falsos positivos en Nova con un F1-score de 0.44. Mientras que

en ElasticSearch, el número de falsos positivos es superior, con un 60% y el F1-Score es igual

que en Nova, 0.44. Estos resultados pueden parecer contradictorios con los resultados anteri-

ores donde ElasticSearch tiene un menor porcentaje de BFC que no son inducidos por un BIC

y esto puede hacer que el número de falsos positivos sea menor que en Nova. Sin embargo,

la razón por la cuál ElasticSearch computa más falsos positivos se debe a que el número de

BFC con conjunto commits previos mayor que uno es superior en ElasticSearch que en Nova.

Este hecho provocó que la heurı́stica del algoritmo SZZ fallase con más frecuencia en Elas-

ticSearch, y casi en la mitad de estos casos se asumió que el commit mas antiguo en el tiempo

perteneciente al conjunto PCS(e) ra el BIC y en realidad, esta heurı́stica no se cumplió en
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Table B.6: Resultados de verdaderos positivos, verdaderos negativos, falsos negativos, recall

y precisión para los algoritmos SZZ y SZZ-1 suponiendo que el algoritmo solo marca uno los

compromisos anteriores del conjunto de PCS(b) como BIC.

Verdaderos Positivos Falsos Positivos Falsos Negativos Precisión Recall F1

Nova (SZZ) 25 (26%) 54 (56%) 17 (18%) 0.32 0.60 0.42

Nova (SZZ-1) 28 (30%) 51 (55%) 14 (15%) 0.35 0.58 0.44

ES (SZZ) 26 (27%) 59 (61%) 12 (12%) 0.31 0.68 0.43

ES (SZZ-1) 27 (28%) 58 (60%) 11 (12%) 0.32 0.71 0.44

la mayorı́a de los casos. Otra razón que explica por qué Nova calcula una recall más alta que

ElasticSearch es el número de BFC con solamente nuevas lı́neas añadidas, esto causó que la

cantidad de falsos negativos aumentase ya que SZZ no incluye estos BFC en su análisis.

Otros estudios como Kim et al. [Kim et al., 2006c], Williams y Spacco [Williams and Spacco, 2008]

y Da Costa et al. [da Costa et al., 2016] también analizaron manualmente muestras de datos

usando el algoritmo SZZ. Sin embargo, esto autores obtuvieron porcentajes mucho más altos

de precisión y recall en los resultados obtenidos en el SZZ que los que se han obtenido en

esta tesis. Esto se debe a que éstos estudios no estaban comparando sus resultados con ningún

“estándar de oro”, y por tanto no diferenciaban entre BIC y FFM, y no definı́an exactamente

qué era un error. Como consecuencia, estos estudios no contemplaron otros posibles esce-

narios donde la causa del error era debida a otras razones distintas a la actual premisa, por

ejemplo, cambios en APIs externas o cambios de co-evolución. Mientras que en esta tesis

analizamos todo el contexto de un BFC, éstos estudios solo se enfocan en verificar si dado

un BFC el algoritmo es capaz de encontrar un posible BIC, sin la necesidad de que este BIC

sea la verdadera razón. Por otro lado, puede ocurrir que debido a los proyectos seleccionados

en estos estudios, el porcentaje de falsos negativos disminuya debido a casos muy diferentes

de introducción de errores por commit previos. Esta es uno de las razones por las cuales

proponemos una lı́nea de trabajo futuro con el fin de extender nuestro análisis a un mayor

conjunto de proyectos.

En cualquier caso, nuestra investigación muestra evidencia de que asumir que el commit
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previo a las lı́neas modificadas en un BFC es el origen del error no se cumple para una

fracción significativa de errores. Además, también muestra que el modelo propuesto en el

Capı́tulo 5, al menos teóricamente, cumple con la preocupación fundamental de identificar

inequı́vocamente el BIC, cuando éste existe. Y muestra el porcentaje de falsos positivos

presentes en el algoritmo SZZ, que en el mejor de los casos es un 25% en Nova usando SZZ-

1 donde se assume que el BIC es el mas temprano en el tiempo de todos los possibles BIC

identificados. Sin embargo, es necesario realizar más investigaciones sobre la automatización

del modelo, ası́ como investigar más a fondo cómo los factores externos y la evolución de los

requisitos afectan a la manifestación e inserción de errores en los proyectos.

B.8 Conclusiones y Trabajo Futuro

Este capı́tulo recapitula los objetivos iniciales de investigación y las contribuciones estable-

cidas en el Capı́tulo 1. Además describe las conclusiones principales de esta tesis ası́ como

las posibles lı́neas de investigación futura.

B.9 Conclusiones

Las conclusiones de esta tesis se presentan en relación con el conjunto de objetivos y contribu-

ciones introducidos en las secciónes 1.2 y 1.3 del Capı́tulo 1. En primer lugar, se presentan

las conclusiones obtenidas tras estudiar a través de una revisión sistemática de la literatura el

uso del algoritmo SZZ y el problema actual relacionado con la identificación del momento en

que se introdujo un error en el código fuente de un proyecto, ası́ como una cuantificación de

las limitaciones del algoritmo SZZ. Después, se presentan las conclusiones relacionadas con

el modelo teórico propuesto para identificar con mayor precisión el momento de introducción

de un error, en caso de que este momento exista. Esta solución se trata de un modelo teórico

que distingue entre el momento de introducción y el momento de manifestación del error,

para ello se utiliza un hipotético test que comprueba la funcionalidad que ha sido arreglada

en otros momentos previos. Por último, se presentan las conclusiones relacionadas con el

estudio empı́rico sobre la aplicación del modelo teórico propuesto para identificar los BIC en

dos casos de estudio: Nova y ElasticSearch.
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Para comprender el problema actual sobre dónde se introdujo el error, se ha realizado

una revisión sistemática de la literatura (SLR) en el uso del algoritmo SZZ, que es uno de

los algoritmos más conocidos para identificar el cambio que introdujo el error (BIC). De las

458 publicaciones que citan el algoritmo, la muestra analizada en la SLR constaba de 187

publicaciones que usaban las dos partes del algoritmo. Esta SLR aporta más conocimiento

para entender los problemas de investigación presentes en la ingenierı́a del software cuando

se asumen premisas erróneas, como ocurre con el uso del algoritmo SZZ. Los resultados de la

SLR demostraron que las publicaciones que usan el SZZ son en su mayorı́a no reproducibles,

además no es común que los artı́culos mencionen las limitaciones del uso de éste algoritmo

y finalmente, que los autores prefieren usar sus propias mejoras del algoritmo antes que las

mejoras propuestas por otros autores. Además, la SLR sirvió para cuantificar las limitaciones

y los problemas que afectan a este particular algoritmo cuando se trata de identificar el BIC.

Después de entender y cuantificar el problema actual sobre la identificación del BIC. Se

propuso un modelo teórico que da solución a estas limitaciones al usar el algoritmo SZZ o

algoritmos basados en el SZZ. Importantes aportaciones en esta tesis son: la definición de

qué es un error, cómo identificar el momento de inserción de un error usando el propuesto

modelo y finalmente el criterio que debe aplicarse para usar el modelo. Como ya se ha

comentado anteriormente, el modelo propuesto se basa en la idea de un test hipotético que

conoce en cada momento cómo debe comportarse el proyecto en un momento especı́fico. El

modelo propuesto contempla todos los escenarios que limitan el correcto funcionamiento del

SZZ ya que ejecuta un test que comprueba en cada uno de los momentos previos al BFC, la

funcionalidad que se ha arreglado en el BFC y no solo se tiene en cuenta el análisis de las

lı́neas que han sido modificadas par identificar el origen del error. Por tanto, el momento en

el que el test falle por primera vez, es el momento en el que se introdujo el error.

Por último, se presentas las conclusiones sobre el experimento empı́rico que estudia la

aplicación práctica del modelo propuesto en dos casos de estudio: Nova y ElasticSearch.

Éste estudio ha demostrado que para una larga fracción de los errores analizados se puede

identificar si un BFC ha sido causado por un BIC o no usando la teorı́a del modelo propuesto.

Cuando un BFC es causado por un BIC, hemos identificado manualmente el 60% de los

commits que insertaron el error en Nova y el 68% en ElasticSearch. Además, esta tesis

también propone una terminologı́a para entender e identificar cada uno de los elementos que
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forman parte del análisis para localizar el origen del error. Hasta donde sabemos, esta es la

primera vez que se detalla una terminogı́a con el fin de explicar e identificar el BIC dado un

BFC.

Para resumir, esta tesis se centra en describir y contextualizar el problema actual de iden-

tificar el origen de un error. Para tratar este problema, hemos estudiado y cuantificado las

limitaciones que afectan al algoritmo más usado, y hemos propuesto una solución basada en

un nuevo modelo teórico que localiza inequı́vocamente el BIC. Hemos aplicado este modelo

a dos casos de estudio para localizar el origen del error creando un conjunto que contempla

“la gran verdad” y que ha sido usado para comparar el rendimiento real de algoritmos basados

en el SZZ.

Si esta tesis sufriese modificaciones, la última versión disponible se encuentra en http:

//gemarodri.github.io/Thesis-Gema.

B.10 Trabajo Futuro

Después de aplicar el modelo propuesto y su criterio para identificar el commit que introdujo

el error y el commit que manifiestó el error por primera vez, es comprensible pensar que

uno de los trabajos futuros sea tratar de automatizar la teorı́a propuesta lo máximo posible.

De este modo, se obtendrı́a automáticamente el BIC, en el caso de que exista, y el FFM

para cada BFC introducido en el modelo. Como se ha mencionado anteriormente, el modelo

contempla algunos escenarios que son difı́cilmente automatizables, en su mayorı́a debido a la

dificultad de reconstruir un estado del sistema que use dependencias que están obsoletas en la

actualidad. Por esta razón, el TSB no podrı́a ser implementado en ciertas versiones anteriores

al BFC en el proyecto. Como trabajo futuro me gustarı́a encontrar un proyecto óptimo donde

se detallasen cada una de las dependencias y entornos de un sistema y que además, estuviesen

todavı́a disponibles. En este proyecto estudiarı́a la automatización del modelo propuesto.

Desde un punto de vista práctico, la automatización del modelo propuesto es interesante

porque aporta al los proyectos de software una valiosa herramienta para entender mejor que

es un error y como fue introducido, y por tanto diseñar medidas para mitigarlo.

Otra futura lı́nea de investigación es seleccionar un tamaño de muestra mayor con el fin

de llevar a cabo una clasificacón que estudiarı́a la frecuencia con la que dado un BFC, éste
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presenta un BIC. La clasificación aportará más conocimientos sobre la posible existencia de

patrones que han permanecido ocultos en a literatura actual y que porı́an ser descubiertos

analizando la relación entre los BFC y su origen a través de las descripciones del informe

de error, los cambios realizados en el código y la aplicación del modelo propuesto. Además,

este estudio prodrı́a ayudar a diseñar mejor la integración de test, para identificar con mayor

precisión los BIC, o al menos, para comprobar que existen en ciertos casos.

Finalmente, otro trabajo futuro interesante serı́a replicar estudios anteriores basados en

analizar el origen del error, y que posean alto impacto en la comunidad pero usando nuestro

modelo propuesto. Estos estudios estarı́an relacionados con la prevención, la detección y

clasificación de errores y se quntificarı́a como afecta en gran escala la asunción en la que se

basa el algoritmo SZZ y sus derivados.
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good are my tests? In Proceedings of the 8th Workshop on Emerging Trends in Software

Metrics, pages 9–14. IEEE Press.

[Brooks, 1974] Brooks, F. P. (1974). The mythical man-month. Datamation, 20(12):44–52.

[Brun et al., 2013] Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. (2013). Early de-

tection of collaboration conflicts and risks. IEEE Transactions on Software Engineering,

pages 1358–1375.



BIBLIOGRAPHY 181

[Cao, 2015] Cao, Y. (2015). Investigating the Impact of Personal, Temporal and Participa-

tion Factors on Code Review Quality. PhD thesis, Universite de Montreal.

[Chandra and Chen, 2000] Chandra, S. and Chen, P. M. (2000). Whither generic recovery

from application faults? a fault study using open-source software. In Dependable Systems

and Networks, 2000. DSN 2000. Proceedings International Conference on, pages 97–106.

IEEE.

[Charmaz, 2014] Charmaz, K. (2014). Constructing grounded theory. Sage.

[Chen et al., 2014] Chen, T.-H., Nagappan, M., Shihab, E., and Hassan, A. E. (2014). An

empirical study of dormant bugs. In Proceedings of the 11th Working Conference on

Mining Software Repositories, pages 82–91. ACM.

[Chou et al., 2001] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. (2001). An

empirical study of operating systems errors. In ACM SIGOPS Operating Systems Review,

pages 73–88. ACM.

[Ciancarini and Sillitti, 2016] Ciancarini, P. and Sillitti, A. (2016). A model for predicting

bug fixes in open source operating systems: an empirical study. In 28th International

Conference on Software Engineering and Knowledge Engineering (SEKE 2016), Redwood

City, San Francisco Bay, CA, USA, pages 1–3.

[Clarke and Oxman, 2000] Clarke, M. and Oxman, A. (2000). Cochrane reviewers’ hand-

book. Update Software.

[Cleve and Zeller, 2005] Cleve, H. and Zeller, A. (2005). Locating causes of program fail-

ures. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Confer-

ence on, pages 342–351. IEEE.

[Copeland, 2005] Copeland, T. (2005). Pmd applied.
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