
How much time did it take to notify a Bug?
Two case studies: ElasticSearch and Nova
Gema Rodriguez-Perez

GSyC/LibreSoft
Universidad Rey Juan Carlos

Fuenlabrada, Spain
gerope@libresoft.info

Gregorio Robles
GSyC/LibreSoft

Universidad Rey Juan Carlos
Fuenlabrada, Spain
grex@gsyc.urjc.es

Jesus M. Gonzalez-Barahona
GSyC/LibreSoft

Universidad Rey Juan Carlos
Fuenlabrada, Spain

jgb@gsyc.es

Abstract—The Time To Notify (TTN) a bug is a valuable metric
in the software maintenance and evolution studies that describes
how much time it takes for a bug to be notified/reported in the
issue tracking system since the time the bug was introduced into
the source code. Even so, it is still a challenge to exactly calculate
it since no precise way exists to locate where and when the bug
originated. This paper aims to study what is the value of TTN
in two different projects. For a set of bugs in these projects,
we know exactly which “previous commit” was the cause of the
failure in the system. Furthermore, to better understand how
this is related to the maintenance and evolution of a software,
we also analyze the relationship between TTN and other metrics
extracted from the source code management (SCM) system such
as the author of the bug, the Time To Fix (TTF) or the developer
experience. We have observed that the mean of the TTN in the
projects was 312 days and 431 days. However, only one of the
projects showed a moderate correlation between the experience
of the author who created the bug and TTN.

Keywords-Bug introduction change; bug seeding metrics;

I. INTRODUCTION

It is well-known that a large amount of the total effort of
a software system is spent in maintenance and evolution [20],
some sources even assigning this phase over 80% of the total
cost. Hence, researchers have spent much effort understanding
and characterizing software maintenance and evolution pro-
cesses. One of the main areas in software maintenance and
evolution is related to bug detection and analysis. Metrics such
as the Time To Fix (TTF), the Time To Review (TTR) or the
fix-effort to improve code quality have been thus proposed in
the research literature [11][14]. One of these metrics, the one
that this paper is going to analyze is the the Time To Notify
(TTN) a bug. The TTN is the time that goes from the time
where a bug has been introduced in the source code to the
time when the wrong behavior is notified in the bug tracking
system of a project.

The concept of TTN provides insight into fundamental
aspects of the software maintenance of a project that are
not easy to obtain, especially in Free/Open Source Software
(FOSS) communities – such as the well-known Mozilla,
Eclipse or GNOME projects. In these environments, effort
information has historically neither been stored nor maintained
in their bug tracking system (e.g., Bugzilla) in spite of the
valuable knowledge of the product complexity that it could

provide. Currently, the only bug tracking system that allows
store and maintain some type of effort information related to
bug fixing activity is JIRA [21], as it includes an estimate
of the time it will take to fix the issue. However, the TTN
can be potentially calculated by combining information from
the source code management system (SCM) and bug tracking
system (BTS). Although it won’t directly provide a measure
of (human) effort, it is a proxy of efficiency: low values of
TTN may indicate better maintained software (with code being
changed/tested continuously), while higher values may denote
less maintained software (with potential risks being present
for longer periods of time).

To compute the life of a bug in a software, it is necessary
to know exactly when and where a bug was introduced. As
versioning systems (such as git) are commonly used in modern
software development, meta-data (committer, author, time,
etc.) on all changes exists, and we could potentially identify
what line introduced the bug. However, finding the line of code
where the bug was introduced is not a trivial task. Several
methods have been proposed to determine what commits are
the candidates of having introduced a given bug. The popular
SZZ algorithm [19] is one of them: it traces the lines touched
in a fixing commit back to the time when these lines were
modified or added. The main concern in using this algorithm
is the that it is prone to provide a wrong measure in some
situations that frequently happen during the evolution of a
software system. These situations, such as changes in the API,
present a common characteristic: the bug was not introduced
in the previous commit(s). So, when the line was introduced,
the software was correct; the wrong behavior appears due to
other, external changes.

In this paper, we measure TTN for a set of bugs from two
different FOSS projects: ElasticSearch and Nova. Because of
previous research performed on them by the authors, we know
the exact location of the Bug Introducing Change (BIC) for a
set of bugs. This means that from a set of “previous commits”
of each of the fixing lines, we are able to identify what specific
previous commit caused the failure in the system. We compare
as well our measurements of TTN with the ones obtained with
the SZZ algorithm.

Furthermore, to better understand how this is related to the
maintenance and evolution of a software, we also analyze the



relationship between TTN and other metrics extracted from
the SCM system, such as the author of the bug, the time to
fix or the developer experience inserting the bug.

Summing up, we are interested in studying the real value
of TTN to answer following research questions:

• RQ1: What are the values of TTN in both projects? What
is its mean, median, etc.?

• RQ2: What is the correlation of TTN with others char-
acteristics of the project/developers involved in the bug
fixing process?

Our results reveal that the mean TTN differs from the mean
calculated with other methods. In addition, we have found that
TTN has a dependency with the experience of the developer
who introduced the bug. On the other hand, we note that to
measure the TTN is crucial to determine exactly the location of
the BIC; so far, now no precise way exists. Thus, we propose
a simple idea which may shed some light to this problem.

The remainder of the paper is organized as follows: In
Section II the current body of knowledge is presented. Next,
Section III describes the methodology used to identify the
Bug Introducing Change (BIC) and calculates the metrics.
Results obtained for Nova and ElasticSearch are presented
in Section V. Section VI answers the research questions,
and discusses potential applications and improvements to our
approach. After reporting the limitations and threats to validity
in Section VII, we draw some conclusions and point out
potential future work in Section VIII.

II. RELATED WORK

Kim and Whitehead calculated the time to fix bugs (bug-fix
time) in ArgoUML and PostgreSQL projects reporting that the
median time for fixing a single bug is around 200 days. Also,
they argue that this time is a significant factor to measure
the quality of a software system [11]. Furthermore, Guo et
al. studied two Microsoft products, looking for the attributes
that had influence in the fixing commit: they found that bugs
reported by developers with higher reputation were not only
more likely to get fixed, but also fixed faster [7].

Eyolfson et al. define the (bug-fix time) as the time from
the earliest commit that introduced the bug to the bug-fixing
commit. Their findings show that the time and day of a code
commit may affect the quality of the code [4].

Lionel et al. also studied the fix-time for Bugs in large
FOSS projects; their results indicate that the priority of a
bug in Eclipse is correlated with the time to fix [12]. On
the contrary, Bhattacharya et al. used regression testing to
measure the correlation between bug-fix time with some of
the bug report attributes such as number of attachments or
bug severity, finding that their results did not present such
correlation [3].

Zhang et al. proposed an effective method for predicting the
number of bugs that will be fixed in the future and the time
required and quickness, a binary classification (slow or quick)
of the time required to fix a bug [24]. In this line Ginger et al.
investigated the relationship between bug report attributes in
three FOSS projects –Eclipse, Mozilla, and GNOME– to build

a prediction model. Their findings show that the reporter, the
assignee and the date the bug report was opened were the
attributes with the strongest influence on the fix-time of the
bugs [6].

Some authors have decided to study how the experience
of the author affects in the bug fixing activity. Development
experience has been measured in several ways: number of
commits [4], fixing activity [1] and ownership [5]. Thus, based
on these measures, Izquierdo et al. analyzed some Mozilla
modules expecting statistical differences between develop-
ers with different levels of experience and the introduction
of bugs, but the results did not show correlation, meaning
that more experience does not imply less bug introducing
changes [10]. Also, Izquierdo et al. studied whether developers
who introduced a bug were the same who fixed it; their
findings show that in most cases people are usually fixing
bugs that were introduced by other developers [9].

Other studies have analyzed the experience of the author to
predict the future bugs, and although there is research literature
that suggests that by using this information the prediction of
bugs does not improve [22], others report that the change’s
defect probability decreases with higher experience of the
developers [15]. However, it seems there is evidence that
defect injection rates vary among different developers [13].

While the prior studies were built under the assumption that
the previous modifications to a fixed line was the cause of the
bug, the contribution of our study resides in the fact that we
do not follow this assumption, which is sometimes flawed.
Instead, we identify the real modification that introduced the
bug [18]. Once this modification is identified, we compute
some of the metrics found in previous studies and compare
our results to them.

III. METHODOLOGY

In our study, the data analyzed has been obtained from the
source code management system, the issue tracking system
and the code review system. We illustrate our methodology
in Figure 1, where the input is a set of bug reports randomly
extracted from the issue tracking system. The steps of our
process are given by white boxes; the colored boxes give the
sources that have been used to obtain the information required
in each step.

Fig. 1. The methodology used in this study, starting with the analysis of a
fixing commit, determining the involved lines of code, obtaining the previous
commits, finding the BIC and finally computing the value of the metrics for
the whole process.



The following list is a detailed description of the steps:
1) Find the fixing commit of each bug report. The linkage

of both elements was done manually since after fixing a
bug, it is common practice in many open source projects
that developers provide information, including a link to
the commit in the versioning system, in the bug report
in the issue tracking system.

2) Find the lines that this commit added, modified or
deleted to solve the bug.

3) Obtain, for each of those lines, the commit that added,
modified or deleted these lines previously. The result is
a set with previous commits for each line.

4) Analyze which one of the previous commits was the
BIC. In the case where the preceding commit is not
the origin of the bug track back to a previous commit,
until the line causing the failure is found. In the case
where the fixing commit consist exclusively of new
lines, analyze previous commits to nearby lines looking
whether in any of them the developer forgot to add these
lines. It should be noted that the SZZ algorithm discards
fixing commits that only add lines.

5) Extract the date when the fixing commit, the BIC and
the bug report have been submitted, as well as the author
of each of the commits to calculate our metrics.

A. Metrics
To compute the metrics used in this study, we need to

identify the BIC. Once this has been done, we are able to
measure the time values. Next, we describe the metrics used
in our study:

• Experience until Bug Introducing Change (EuBIC): Ex-
perience of the author of the BIC at the moment of doing
the commit. Experience is measured in days from the first
time that the author committed some code to the project
until the BIC.

• Time To Notify (TTN): Time in days since the bug
introducing commit was merged into the master branch
until some developer notified the unexpected behavior
and reported it in the bug tracking system.

• Time To Fix (TTF): Period in days from the notification of
a bug report to when it was closed with a fixing commit.

• Bug Fixing Time (BFT): Time in days from the date of
the BIC to the fixing commit date. This value can be also
computed by adding TTN and TTF.

Figure 2 provides a visual explanation of the metrics pro-
posed in this paper. For example, to obtain the metrics for
bug report #13334 of ElasticSearch, we need to identify the
fixing commit (which is c6da8d5e1) and the BIC (c73fff7).
Then, analyzing the meta-data of theses commits, we obtain
the date and the author for both of them: the bug report was
done in September 4th 2015, the fixing commit in September
15th 2015, and the BIC was inserted in July 13th 2015 by a
developer with almost 3 years of experience in the project.
Hence, in our example, the values of the metrics under study
are: 54 days for TTN, 11 days for TTF, 65 days for BFT and
1,097 days for EuBIC.

Fig. 2. Visualization of the periods under study: Experience Until Bug
Introducing Change (EuBIC), Time To Notify (TTN), Time To Fix (TTF),
Bug Fixing Time (BFT).

We would like to compare our metrics with the widely
used SZZ algorithm. We will therefore assume that the closest
commit in time (i.e., the previous one) of the SZZ algorithm
is the one that induces the bug-fixing commit, as it has been
done in previous works [4]. It should be noted, however,
that the SZZ algorithm may not identify the BIC correctly,
as its outcome could be a set of commits among which the
real BIC is not included. In addition, in our comparison we
discard those fixing commits with only new lines, since the
SZZ algorithm removes them from the analysis.

IV. EVALUATION

We have validated our methodology analyzing tickets from
two projects, Nova and ElasticSearch, written in different
programming languages.

Nova belongs to the OpenStack project, a cloud computing
platform with a huge developer community (more than 5,000
developers) and significant industrial support from hundreds of
organizations, among them several major IT companies such
as Red Hat, Intel, IBM, HP, etc. The source code of Nova
is written in Python and was particularly of interest because
it is continuously evolving due to its very active community.
Currently it has more than 44,000 commits with more than 2
million lines of code and around 1,000 contributors1. All its
code is hosted and available in GitHub2 and it is developed
with git3 as the source code management, Launchpad4 as the
issue tracking system and Gerrit5 as the code review system.

ElasticSearch is a distributed FLOSS search and analytics
engine written in Java. It has 26,000 commits and 764 con-
tributors. Its labeling policy in the bug tracking system is
very strict, thus we can be sure that tickets labeled as bug
reports (i.e., the ones analyzed in this paper) are real bug
reports. ElasticSearch hosts its code in GitHub6. The project
uses GitHub’s issue tracking and pull request system for bug
tracking and reviewing. We use in this paper a data set from

1http://activity.openstack.org/dash/browser/repository.html?repository=
nova.git&ds=scm

2https://github.com/openstack/nova
3https://git-scm.com/
4https://launchpad.net/
5https://www.gerritcodereview.com/
6https://github.com/elastic/elasticsearch/



TABLE I
MEAN IN DAYS OF TTN, TTF, BFT FOR THE NOVA PROJECT, BOTH FOR

THE real BIC AS FOR THE BIC OBTAINED WITH SZZ

TTN TTF BFT

Real 432 65 497

SZZ 260 52 312

TABLE II
MEAN IN DAYS OF TTN, TTF, BFT FOR THE ELASTICSEARCH PROJECT,

BOTH FOR THE real BIC AS FOR THE BIC OBTAINED WITH SZZ.

TTN TTF BFT

Real 312 14 326

SZZ 135 16 151

these two projects created in a prior research work, where we
manually analyzed a total of 76 bug fixing commits of real
bug reports in detail, looking in each one for the BIC that
caused the failure [17].

To better understand how our results are related with the
maintenance and evolution of a software, we have used the
OLS (Ordinary Least Square) regression model to calculate the
dependency of the different variables in the projects. We have
used as well the Pearson method to compute the correlation
between the variables.

V. RESULTS

We have calculated the values of TTN, EuBIC and TTF for
76 bug fixing commits, 39 belonging to Nova and 37 belonging
to ElasticSearch. Table I and Table II show the means of Time
To Notify (TTN), Time To Fix (TTF) and Bug Fixing Time
(BFT) computed for the Nova and the ElasticSearch projects,
respectively. The tables include the values for the real BIC
(manually checked), and the ones that can be obtained by using
the SZZ algorithm.

Figure 3 and Figure 4 show the values of TTN, TTF and
EuBIC for both projects using box plots. We can see that it
takes 158 days in ElasticSearch to notify 50% of the bugs,
and 336 days for Nova. The mean is almost 200 days in
ElasticSearch and around 350 days in Nova. TTF is low for
both projects, but especially for ElasticSearch where there is
almost no dispersion and bugs are fixed almost immediately
after their notification. And Nova developers are slightly
more experienced than ElasticSearch developers when they
introduce bugs.

Figure 5 shows the correlation matrix between the metrics
under analysis for the Nova project. A moderate negative cor-
relation, −0.56, between the EuBIC of the author introducing
the bug and TTN can be found. The value of this correlation
for the ElasticSearch project is −0.383, which points to a
weaker relationship7.

Figure 6 shows scatterplots with the distribution of each pair
of metrics for the Nova project. While we can infer a negative
inclination in the relationship between TTN and EuBIC with

7Due to space constrains we do not show a similar figure for ElasticSearch.

Fig. 3. Box-plots with TTN, TTF and EuBIC for the Nova project.

Fig. 4. Box-plots with TTN, TTF and EuBIC for the ElasticSearch project.

a R2 value of 0.32, which indicates how closely these two
variables are related, the plot for TTN or EuBIC against TTF
does not indicate such tendency.

On the other hand, Figure 7 shows how the variables are
related to each other in ElasticSearch. In this project, it is
difficult to notice the how closely the variables are related,
the value of the coefficient R2 in each scatterplot is around
0.09.

To gain further insight into the problem, we have analyzed
if the same person who introduced the BIC is also the one who
reported and/or fixed it. Tables III and IV show the percentage
of bugs in ElasticSearch and Nova where the same developer
(1) notified and fixed the bug, (2) introduced the BIC and fixed
the bug, (3) introduced the BIC and notified the bug, and (4)
introduced the BIC, notified the bug and fixed it.

The highest percentage corresponds to the situation where
the same developer who notifies the bug also fixes it. The
second rank is for bugs that have been fixed by the same
developer who introduced it, i.e., somebody else reported the
bug; in the case of ElasticSearch, the percentage is as high
as for the previous case. The cases where the same developer



Fig. 5. Correlation Matrix of the variables measured for the Nova project.
Correlation coefficients are colored according to the value; white means a cor-
relation value of 0, the red tone increases with the grade of positive correlation
while the blue tone decreases with the grade of negative correlation.

Fig. 6. Scatterplots with the metrics for the Nova project.

TABLE III
PERCENTAGE OF BUGS WHERE A DEVELOPER PERFORMED MORE THAN
ONE OF THE TASKS UNDER STUDY (INTRODUCE, NOTIFY, FIX) FOR THE

ELASTICSEARCH PROJECT.

Notify-Fix Introd.-Fix Introd.-Notify Introd.-Notify-Fix

Yes 16 (43%) 16 (43%) 11 (30%) 10 (27%)

No 21 (57%) 21 (57%) 26 (70%) 27 (73%)

introduced the bug and later on notified it are less frequent,
but still happen often (30% for ElasticSearch and 13% for
Nova). Finally, a bug introduced, notified and fixed by the
same developer occurs not marginally (25% for ElasticSearch,
13% for Nova).

Fig. 7. Scatterplots with the metrics for the ES project.

TABLE IV
PERCENTAGE OF BUGS WHERE A DEVELOPER PERFORMED MORE THAN
ONE OF THE TASKS UNDER STUDY (INTRODUCE, NOTIFY, FIX) FOR THE

ELASTICSEARCH PROJECT.

Notify-Fix Introd.-Fix Introd.-Notify Introd.-Notify-Fix

Yes 30 (77%) 7 (18%) 5 (13%) 5 (13%)

No 9 (23%) 32 (82%) 34 (87%) 34 (87%)

VI. DISCUSSION

After analyzing several fixing commits in this study, we
have seen that real (manually validated) TTN values differ
substantially from the ones computed using the well-known
and widely-used SZZ algorithm, identifying different BICs for
36% of the cases in Nova and for 24% in ElasticSearch. This is
the reason why the mean TTN computed using SZZ is almost
half the real one.

The median time to notify a bug is almost 200 days in
ElasticSearch and about 350 days in Nova. If we want to
calculate the median time of bug fixing for each project, we
have to add the median TTF to the TTN, obtaining the BFT.
The BFT in ElasticSearch does not differ much from the TTN,
whereas in Nova it reaches 400 days. Kim and Whitehead
in [11] reported values of BFT that range from 100 to 200
days. In our case studies, only ElasticSearch is in this range,
although by very little margin. An explanation for the deviation
is because Kim and Whitehead used SZZ to locate the BIC,
which we have found is not only always true, but provides an
optimistic value.

RQ1: The real value of the Time to Notify (TTN) a bug
in both projects differs from the value calculated using
SZZ.

We have studied the relationship between the variables
under study. We have seen for Nova that TTN shows a
tendency to increase for lower values of EuBIC, meaning



that one of the reasons for high values of TTN could be
that the developer who introduced the bug did not have much
experience on the project at that moment.

RQ2: The experience of the author who introduced the
bug in the source code and the Time To Notify (TTN)
are (negatively) correlated. On the contrary, the results
do not show correlation between the Time To Fix (TTF)
with the Time To Notify (TTN), nor with the experience
of the author (EuBIC) who introduced the bug in the
source code.

Given that we have the meta-data from the source code
management systems, we could trace how many developers
do several tasks in the bug introduction − > notification
− > fixing process. The results show that notifiers often also
fix the bugs. Developers who introduced the bug also appear
to fix it (after a third party notifies it) and sometimes they
even notify the bug without providing a solution. Interestingly
enough, we have found that the number of times where a
developer is involved in the three tasks for the same bug report
is not negligible. These results raise a lot of questions that are
very interesting from the community perspective. One possible
reason that explains the low percentage of authors who fix their
bugs may be because they are no longer in the project when
the bug is reported. We have looked for this and have found
that the number of authors who have abandoned the project
when the bug was reported was only one in ElasticSearch and
two in Nova. This means that other reasons have to be more
important than code ownership when it comes to a bug. On
the contrary, the high percentages of developers notifying and
fixing bugs may be because when they reporting the bug, they
already know how to fix it, and this might have and impact
reducing the time to fix a bug.

All in all, we think that the Time To Notify a bug can
demonstrate to be a good metric of a project, as it provides
good perspective on how the project is maintained. Other
metrics can be easily circumvented, as for instance the number
of commits or of mailing list messages, and may result in per-
verse effects if they are linked with incentives or productivity
measures. For TTN (and BFT) this is more difficult to achieve,
but not impossible: one could think of a developer introducing
a bug and the notifying and fixing it shortly thereafter to obtain
lower values.

Given that one of the problems with TTN (and the rest of
associated metrics) is that finding the BIC is difficult and has
to be done in a manual way if high precision is the goal, we
would like to propose that bug tracking systems include an
additional field when closing a bug. In this field, the fixing
developer could specify which one was the BIC. It should
be noted that there is no one more qualified at this moment
that knows where and when the bug was caused. That way
the project could have an accurate measure of its maintenance
activities and processes, and researchers will access better data
and build a better models that estimate effort and the total cost
of the software [2], [16], [23].

VII. THREATS TO VALIDITY

The major threat to the validity of our study comes from
the limited sample size of tickets used in this research. It is,
however, a relatively high number of tickets considering that
the analysis was done manually and in detail to reach reliable
results, but there is a long way to get a representative sample
from a large variety of diverse Free/Open Source Systems,
or even other software projects. Our analysis requires a lot of
human effort, so meaningfully increasing the number of tickets
is human resource intensive and difficult. However, it should
be noted that our numbers are in the order of magnitude of
similar studies: so, for instance, Hindle’s et al. article on large
commits considered 100 commits in total [8].

Other internal threats to validity are:

• We are only using part of the information that the tickets
provide, like comments and text. There could be some
patterns that could potentially be found that could help
in identifying bug fixes more accurately. However, we
think that this information is enough to determine where
the bug introducing change is, as comments found in
the ticket usually give enough information about what
is failing, and this can be tracked back to the code.

• In some cases, when only new code was added in the
bug fixing commit, researchers may have problems to
compare their TTN with the one provided by SZZ,
because of SZZ does not considered new additions in
the fixing commits.

• The experience of the developer calculated from its first
commit in the system may not be the best definition to
calculate his/her experience; an early, but low activity
contributor could potentially have less experience in the
project that a new, but very active contributor.

The most important external threats are:

• OpenStack is a special project with a very rapid evolution,
and a very active community of developer and Elastic-
Search is relatively new project with a strong criteria in
the bug fix activity. In other projects, with less commits
per year, results may be totally different.

• The programming languages analyzed in this research are
Python and Java: It may happen that other programming
languages present different results.

VIII. CONCLUSION AND FURTHER RESEARCH

The study we have performed on Nova and ElasticSearch
has shown that the mean Time To Notify (TTN) a bug is over
ten months, whereas using the SZZ algorithm to calculate this
metric we obtain a value slightly higher than five months.

Our study shows a negative correlation between the TTN
and EuBIC, which means that the time to notify an error is
related to the overall experience of the author.

In addition, we propose to build a new field/option in the
bug tracking system to record which commit was the BIC,
increasing that way the confidence of which previous commit
inserted the bug.



Once we have found this, it makes sense to explore, as
future work, to which extent this happens in other projects with
probably higher number of tickets and with a higher number
metrics.

Another future line could be to perform a detailed research
on how this metric could be helpful in defect prediction field,
building new models or improving them.

The full automation of the methodology used in this paper is
also interesting from a practical point of view. That would pro-
vide software projects with a valuable tool for understanding
how bugs are introduced, and therefore calculate these metrics
for mitigation.

Replication package: we have set up a replication package8

including data sources, intermediate data and scripts.

ACKNOWLEDGMENTS

We want to express our gratitude to Bitergia9 for their open
source tools to mine the repositories of the projects, and the
support they have provided when questions have arisen. Also,
we acknowledge the Spanish Government, through project
TIN2014-59400-R. The last two authors are funded in part
as well by the Region of Madrid under project “eMadrid:
Investigación y Desarrollo de tecnologı́as educativas en la
Comunidad de Madrid” (S2013/ICE-2715).

REFERENCES

[1] S. N. Ahsan, M. T. Afzal, S. Zaman, C. Guetl, and F. Wotawa. Mining
effort data from the oss repository of developers bug fix activity. Journal
of IT in Asia, 3:67–80, 2010.

[2] J. Asundi. The need for effort estimation models for open source
software projects. In Proceedings of the Fifth Workshop on Open Source
Software Engineering. ACM, 2005.

[3] P. Bhattacharya and I. Neamtiu. Bug-fix time prediction models: can
we do better? In Proceedings of the 8th Working Conference on Mining
Software Repositories, pages 207–210. ACM, 2011.

[4] J. Eyolfson, L. Tan, and P. Lam. Do time of day and developer
experience affect commit bugginess? In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 153–162. ACM,
2011.

[5] D. M. German. Using software trails to reconstruct the evolution of
software. Journal of Software Maintenance and Evolution: Research
and Practice, 16(6):367–384, 2004.

[6] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of bugs.
In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, pages 52–56. ACM, 2010.

[7] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, volume 1, pages 495–504. IEEE, 2010.

[8] A. Hindle, D. M. German, and R. Holt. What do large commits tell
us?: a taxonomical study of large commits. In Proceedings of the 2008
international working conference on Mining software repositories, pages
99–108. ACM, 2008.

[9] D. Izquierdo-Cortazar, A. Capiluppi, and J. M. Gonzalez-Barahona.
Are developers fixing their own bugs?: Tracing bug-fixing and bug-
seeding committers. International Journal of Open Source Software
and Processes (IJOSSP), 3(2):23–42, 2011.

[10] D. Izquierdo-Cortázar, G. Robles, and J. M. González-Barahona. Do
more experienced developers introduce fewer bugs? In IFIP Interna-
tional Conference on Open Source Systems, pages 268–273. Springer,
2012.

8http://gemarodri.github.io/Reprodu-Package/
9http://bitergia.com/

[11] S. Kim and E. J. Whitehead Jr. How long did it take to fix bugs?
In Proceedings of the 2006 international workshop on Mining software
repositories, pages 173–174. ACM, 2006.

[12] L. Marks, Y. Zou, and A. E. Hassan. Studying the fix-time for bugs
in large open source projects. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, page 11.
ACM, 2011.

[13] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Naka-
mura. An analysis of developer metrics for fault prediction. In
Proceedings of the 6th International Conference on Predictive Models
in Software Engineering, page 18. ACM, 2010.

[14] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(3):309–346,
2002.

[15] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169–180, 2000.

[16] G. Robles, J. M. González-Barahona, C. Cervigón, A. Capiluppi, and
D. Izquierdo-Cortázar. Estimating development effort in free/open
source software projects by mining software repositories: a case study
of openstack. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 222–231. ACM, 2014.

[17] G. Rodriguez. Analysing on how the bugs are injected into the
source code. In Proceedings of the Doctoral Consortium at the 12th
International Conference on Open Source Systems, Gothenburg, Sweden,
30 May, 2016. University of Skövde, 2016.

[18] G. Rodriguez-Perez, J. M. Gonzalez-Barahona, G. Robles, D. Dalipaj,
and N. Sekitoleko. Bugtracking: A tool to assist in the identification of
bug reports. In IFIP International Conference on Open Source Systems,
pages 192–198. Springer, 2016.

[19] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? Proceedings of the 2005 International Workshop on Mining
software repositories, pages 1–5, 2005.

[20] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, RTI
Project, 7007(011), 2002.

[21] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it
take to fix this bug? In Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 1. IEEE Computer Society, 2007.

[22] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Programmer-based
fault prediction. In PROMISE10: Proceedings of the sixth international
conference on predictor models in software engineering, page 19, 2010.

[23] H. Wu, L. Shi, C. Chen, Q. Wang, and B. Boehm. Maintenance effort
estimation for open source software: A systematic literature review. In
Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on, pages 32–43. IEEE, 2016.

[24] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an
empirical study of commercial software projects. In Proceedings of the
2013 International Conference on Software Engineering, pages 1042–
1051. IEEE Press, 2013.


